期刊文献+

一种改进的基于特征赋权的K均值聚类算法 被引量:10

An Improved K-Means Clustering Algorithm Based on Feature Weighting
下载PDF
导出
摘要 聚类分析是数据挖掘及机器学习领域内的重点问题之一。近年来,为了提高聚类质量,借鉴和引入了分类领域特征选择及特征赋权思想,提出了一些基于特征赋权的聚类算法。在这些研究基础上,本文提出了一种基于密度的初始中心点选择算法,并借鉴文[1]所提出的特征赋权方法,给出了一种改进的基于特征赋权的K均值算法。实验表明该算法能较为稳定地得到较高质量的聚类结果。 Clustering analysis is one of the important problems in the data mining and machine learning areas. Recently, feature selection and feature weighting methods are introduced to clustering algorithms for improving the clustering quality. Inspired by the research, an improved k-means clustering based on feature weighting is proposed, which proposes a density-based initial centers search algorithm. The experiments show that the proposed algorithm can result in high quality clustering steadily.
出处 《计算机科学》 CSCD 北大核心 2006年第7期186-187,共2页 Computer Science
基金 国家自然科学基金项目(60374059) 广东省自然科学基金项目(04300462)资助
关键词 聚类 特征赋权 初始化 Clustering, Feature weighting, Initialization
  • 相关文献

参考文献6

  • 1Domeniconi C, Papadopoulos D, Gunopulos D, Ma S. Subspace Clustering of High Dimensional Data. In: Proc. of the Fourth SIAM Intl. Conf. on Data Mining,2004. 517-521
  • 2Chan E Y, Ching W K, Ng M K, Huang J Z. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition, 2004,37 : 943-952
  • 3Wang Xizhao, Wang Yadong, Wang Lijuan. Improving fuzzy cmeans clustering based on feature-weight learning. Pattern Recognition Letters, 2004,25 : 1123 - 1132
  • 4Aggarwal C C ,Procopiuc C,Wolf J L,et aL Fast Algorithms for Projected Clustering. In: Proc. of ACM SIGMOD Conference 99,1999. 61-72
  • 5Kaufman L,Rousseeuw P. Finding Groups in Data - An Introduction to Cluster Analysis. Wiley Series in Probability and Mathematical Statistics, 1990
  • 6Huang Zhexue. Extensions to the K-Means Algorithm for Clustering LargeData Sets with Categorical Values. Data Mining and Knowledge Discovery, 1998. 283-304

同被引文献76

  • 1姜园,张朝阳,仇佩亮,周东方.用于数据挖掘的聚类算法[J].电子与信息学报,2005,27(4):655-662. 被引量:68
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 3王鑫,王洪国,王珺,王金枝.数据挖掘中聚类方法比较研究[J].计算机技术与发展,2006,16(10):20-22. 被引量:22
  • 4钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 5Likas A,Vlassis M,Verbeek J.The global k-means clusteringalgorithm[J].Pattern Recognition,2003,36(2):451-461.
  • 6王晓东.计算机算法与设计[M].北京:电子工业出版社,2004:86-105.
  • 7Yunjae J. Design and evaluation of clustering criterion for optimal hierarchical agglomerative clustering[ D]. USA: Department of Computer Science , University of Minnesota, 2001.
  • 8Vesanto J, Mhoniemi E. Clustering of the self-organizing map[ J]. Transactions on Neural Network, 2000,11 (3) : 586-600.
  • 9Wang B B, McKay R I, Abbass H A, et al. A comparative study for domain ontology guided feature extraction[ C]. Australia: Australian Computer Society Inc, 2003 : 69-78.
  • 10斯蒂芬·P·罗宾斯.管理学[M].北京:人民大学出版社,1997:99-117.

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部