期刊文献+

数据流管理和挖掘技术探析 被引量:4

Technology of Data Stream Management and Mining
下载PDF
导出
摘要 数据流管理和挖掘技术是数据库领域的新研究方向之一。概述了数据库技术的发展趋势以及数据流的概念、特点、体系结构、应用领域,分析了数据流概要数据结构的构造问题和数据流的连续近似查询技术,最后介绍了数据流挖掘技术。旨在描述数据流管理和挖掘技术的发展概况,为进一步的研究提供有益的借鉴。 The research on data stream is one of the hot topics among the database domain all over the world resently. Firstly, the trend of database technology is summarized, and concepts, characteristics, architecture, applications of data stream are outlined. Second, some methods of constructing synopsis data structure are analyzed concisely, the technology of continuous approximate query is analyzed summarily. Finally, the research on data stream mining is analyzed. The objective of this paper is to contribute to the overall understanding of the technologies available for managing and mining data streams.
出处 《计算机应用研究》 CSCD 北大核心 2006年第8期85-88,共4页 Application Research of Computers
关键词 泛数据 数据流 概要数据结构 连续近似查询 数据流挖掘 Pan-data: Data Stream Synopsis Data Structure: Continuous Annroximate Ouerv: Data Stream Mining
  • 相关文献

参考文献28

  • 1Jim Gray. The Revolution in Database Systems Architecture [ EB/OL]. http://research. microsoft. com, 2004.
  • 2孟小峰.数据库技术发展的思考[EB/OL].http://www.ccf-dbs.org.cn/news/article_132.html,2004.
  • 3Yunyue Zhu, Dennis Shasha. StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time[ EB/OL]. http://cs.nyu.edu, 2002.
  • 4The Strean Group. Stanford Data Stream Management System( Lastest Overview Paper) [ EB/OL]. http://db.stanford, edu, 2005.
  • 5Brian Babcock, Shivnath Babu, et al. Models and Issues in Data Stream System[ EB/OL]. http://www, cs. cmu. edu, 2002.
  • 6T Urhan, M Franklin. XJoin: A Reactively-scheduled Pipelined Join Operator[ J ]. IEEE Data Engineering Bulletin, 2000,23 (2) :27-33.
  • 7Datar M, Gionis A, Indyk P, et al. Maintaining Stream Statistics over Sliding Windows [ C ]. San Francisco: Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms, 2002. 635-644.
  • 8Babcock B, Datar M, Motwani R. Sampling from a Moving Window over Streaming Data[C]. San Francisco: Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms, 2002. 633-634.
  • 9Chris Giannella, Jiawei Hart, Jian Pei, et al. Mining Frequent Patterns in Data Streams at Multiple Time Granularities [ EB/OL ]. http ://maids. ncsa. uiuc. edu, 2003.
  • 10李建中,张冬冬.滑动窗口规模的动态调整算法[J].软件学报,2004,15(12):1800-1814. 被引量:22

二级参考文献34

  • 1S Guha, N Koudas. Approximating a data stream for querying and estimation: Algorithms and performance evaluation. The 18th Int'l Conf on Data Engineering (ICDE), San Jose, California,2002
  • 2S Acharya, P B Gibbons, V Poosala, et al. Join synopses for approximate query answering. The 1999 ACM SIGMOD Int'l Conf on Management of Data, Philadelphia, Pennsylvania, 1999
  • 3S Chaudhuri, R Motwani, V Narasayya. On random sampling over joins. The 1999 ACM SIGMOD Int'l Conf on Management of Data, Philadelphia, Pennsylvania, 1999
  • 4N Alon, Y Matias, M Szegedy. The space complexity of approximating the frequency moments. The 28th Annual ACM Symp on Theory of Computing, Philadelphia, Pennsylvania, 1996
  • 5P Flajolet, G Martin. Probabilistic counting. The 24th Annual IEEE Symp on Foundations of Computer Science, Tucson,Arizona, 1983
  • 6Brian Babcock, Shivnath Babu, Mayur Datar. Models and issues in data stream system. ACM SIGMOD/PODS 2002 Conf,Madison, Winsconsin, 2002
  • 7J Kang, J Naughton, S Viglas. Evaluating window joins over unbounded stream. The 19th Int'l Conf on Data Engineering,Bangalore, India, 2003
  • 8Lukasz Golab, M Tamer Ozsu. Processing sliding window multijoins in continuous queries over data streams. Waterloo University, Tech Rep: CS-2003-01, 2003
  • 9Y Zhu, D Shasha. StatStream: Statistical monitoring of thousands of data streams in real time. The 28th Int' l Conf on Very Large Data Bases, Hong Kong, 2002
  • 10M Datar, A Gionis, P Indyk, et al. Maintaining stream statistics over sliding windows. The 13th Annual ACM-SIAM Symp on Discrete Algorithms, San Francisco, California, 2002

共引文献36

同被引文献16

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部