期刊文献+

基于三维TIN的精细表面建模方法 被引量:15

Highly Refined Surface Reconstruction Method Based on 3D-TIN
下载PDF
导出
摘要 对现有三维不规则三角网(3DTIN)生成算法作了简要分类,回顾和评价了各类典型方法的优缺点和适用性,然后在此基础上提出了一种融合雕刻算法和生长算法优势的合成算法,给出了相应的数据结构。算法基于表面三角形任意一边的邻域结构,采用加权最小长度准则实现表面的快速生长。应用实例表明,算法可以重构具有任意拓扑的复杂表面,并且重构的三角网格表面与被采样的物体表面拓扑差别最小。 This paper firstly by analysing and classifying the wide variety of 3D TIN generation methods, provides a clear overall outline of all those typical methods. Secondly, a combinatorial algorithm for surface reconstruction from three-dimensional points is presented, which is a combination of the sculpture algorithm and growing algorithm. A region growing starting from arbitrary side of the seed triangle is preformed, During the growing procedure, a weighted minimal length criterion is employed to ensured geometric integrity and automatic boundary detection. Experimental results show that the algorithm can efficiently obtain the reconstructed mesh surface with arbitrary topology and with only small topological difference from the surface of the original object.
出处 《计算机应用研究》 CSCD 北大核心 2006年第8期159-161,共3页 Application Research of Computers
基金 国家"973"计划资助项目(2002CB312101) 湖北省青年杰出人才基金资助项目(2004ABB018)
关键词 三维TIN 表面重构 3D DELAUNAY 三维可视化 3 D TIN Surface Reconstruction 3 D Delaunay Triangulation Three-Dimensional Visualization
  • 相关文献

参考文献21

  • 1Mencl R, Muller H. Interpolation and Approximation of Surfaces from Three-Dimensional Scattered Data Points [ C ]. Lisbon : State of the Art Report (STAR) for EUROGRAPHICS, 1998, 51 - 67.
  • 2Edelsbrunner H, E P Muche. Three-Dimensional Alpha Shapes [ J ].ACM Transactions on Graphics,1994,13( 1 ) :43-72.
  • 3Guo B, Menon J, Willette B. Surface Reconstruction Using Alpha Shaps [ J]. Computer Graphics Forum, 1997,16(4 ) : 177-190.
  • 4Amenta N, Bern M, Kamvysselis M. A New Voronoi-based Surface Reconstruction Algorithm [ C ]. Orlando : Proceedings of SIGGRAPH,ACM Press, 1998. 415-420.
  • 5Amenta N, Choi S, Dey T K, et al. A Simple Algorithm for Homeomorphic Surface Reconstruction [ C ]. Hong Kong: Proceedings of the 16th Annual ACM Symposium on Computational Geometry,2000. 213-222.
  • 6Adamy U, Giesen J, John M. New Techniques for Topologically Correct Surface Reconstruction [ C ]. Proceedings of IEEE Visualization,Los Alamitos : IEEE ComputerSociety Press, 2000. 373- 380.
  • 7Boissonnat J D. Geometric Structures for Three-Dimensional Shape Representation[ J ]. ACM Transactions on Graphics, 1984,3 (4) :266- 286.
  • 8Veltkamp R C. Boundaries through Scattered Points of Unknown Density [ J ]. Graphical Model and Image Processing, 1995,57 ( 6 ) : 441 -452.
  • 9Attene M ,Spagnuolo M. Automatic Surface Reconshuction from Point Sets in Space [ J]. Computer Graphics Forum ,2000,19 (3) :457-465.
  • 10Amenta N, Choi S,Kolluri R K. The Power Crust, Unions of Balls,and the Medial Axis Transform [ J ]. Comput. Geom. Theory Appl. ,2001,19 : 127-153.

二级参考文献23

  • 1崔汉国,胡瑞安,金端峰,杨叔子.三维任意区域中点集的三角剖分算法[J].计算机辅助设计与图形学学报,1995,7(2):103-108. 被引量:12
  • 2史力平.三维数据场可视化技术在逆向工程中的应用研究(硕士学位论文)[M].南京:南京航空航天大学,1999..
  • 3Joe B. Delaunay Triangular Meshes in Convex Polygons. SIAM J. Sci. Stat. Comput., 1986, 7 (2) : 514~539.
  • 4Joe B. Delaunay Versus Max 2m in so Lid Angle Triangulations for Three-dimensional Mesh Generation . Int. J. Number Methods Eng., 1991, 31: 987~ 997.
  • 5Zheng S Y, Zhan Z Q, Zhang Z X. A Flexible and Automatic 3D Reconstruction Method. 2004 ISPRS Congress, Istanbul, Turkey,2004.
  • 6Bajaj C L,Proceedings of the SIGGRAPH’95,1995年,109页
  • 7史力平,硕士学位论文,1999年
  • 8蒋长锦,科学计算和C程序集,1998年
  • 9Guo B,Computer Aided Design,1997年,29卷,4期,269页
  • 10Gu P,Computer Aided Design,1995年,27卷,1期,59页

共引文献207

同被引文献126

引证文献15

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部