期刊文献+

基于表面EMG功率谱和BP网络的多运动模式识别 被引量:5

Multi-pattern recognition by using surface electromyography′s power spectra and BP neural networks
下载PDF
导出
摘要 结合功率谱比值法和BP神经网络提出一种基于表面肌电信号(EMG)的多运动模式识别算法.该算法首先根据表面肌电信号功率谱的特点,提出一种有效的特征提取算法——功率谱比值法;然后将功率谱比值特征作为BP神经网络的输入向量,实现对伸腕、屈腕、张开、合拢四种动作模式的识别,该识别结果可为肌电假手的多种运动模式提供仿生控制的信号源.实验结果表明,该方法对同一健康受试者四种运动模式的识别成功率平均达到95%,而对不同的健康受试者的识别成功率平均达到85%. An algorithm based on surface EMG signals was proposed by the combination of power spectral coefficient with BP neural networks (BPNN), to implement multi-pattern recognition of surface electromyography (SEMG). An effective method of feature extraction, power spectral coefficient method, was introduced. Then, it took the obtained characteristics (namely, the computed power spectral coefficients) as the inputs of BPNN to discriminate four motion patterns, palmrs dorsiflexion, flexion, opening and closing. The recognition results could be used as source signals to control powered prostheses. The experimental results indicate that, for the same healthy testee, the success rate can reach 95% averagely by using the above algorithm to implement four motion-pattern discrimination, while, for different healthy testees, it can reach 85 % averagely.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期63-66,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60474054) 教育部新世纪优秀人才支持项目(NCET-04-0558).
关键词 多运动模式识别 功率谱比值法 BP神经网络 表面肌电信号 multi-pattern recognition power spectral coefficient BP neural networks surface EMG
  • 相关文献

参考文献6

  • 1Kuribayashi K, Shimizu S. A discrimination system using neural network for EMG-controlled prostheses-Integral type of EMG signal processing[C] // IEEE/RSJ ed. Proc of the 1993 IEEE/RSJ Int Conferenceon Intelligent Robots and Systems '93. Yokohama:IEEE/RSJ, 1983: 1 750-1 755.
  • 2Dorechuk P C. Upper extremity limb function discrimination using EMG signal analysis [J]. IEEE Trans Biomed Eng, 1983, 30: 18-25.
  • 3王人成,黄昌华,李波,金德闻,张济川.基于BP神经网络的表面肌电信号模式分类的研究[J].中国医疗器械杂志,1998,22(2):63-66. 被引量:20
  • 4Tsujil T. Pattern classification of time-series EMG signals using neural networks[J]. International Journal of Adaptive Control and Signal Processing, 2000,14: 829-848.
  • 5Kukulka C G, Clamann H P. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor policies during isometric contraction[J]. Brain Res, 1981, 219: 45-55.
  • 6Ronager. Power spectrum analysis of EMG pattern in normal and diseased muscles[J]. J Neural Sci, 1989,94(1-3) : 283-294.

共引文献19

同被引文献62

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部