期刊文献+

STL模型布尔运算的实现 被引量:14

Implementation of boolean operations on STL models
下载PDF
导出
摘要 首先建立STL模型的拓扑结构从而获得三角面片间的相邻关系.通过两个实体间的棱面相交性测试获得交点和交线,进而提取交线环.利用约束Delaunay方法对相交的三角形进行二次三角形划分,将相交表面沿交线环剖分为多个面域,利用射线法判断各个面域相对于另一实体的位置关系.通过提取相交环来决定有效的相交线降低了位置关系判断的复杂性,提高了布尔运算的稳定性. The topological structure of STereo lithography(STL) models was built in order to obtain the neighborhood relationship among the triangular facets. The intersection test between every edge of one solid and every facet of another solid was taken to get the intersection points, the intersection seg- ments and the intersection loop. The intersected triangle was subdivided by the constrained delaunay triangulations. The intersected surfaces are divided into several surface patches along the intersection loops. The inclusion between the surface patch and the other solid was taken by Ray-Method. Detecting the loops for determination of the valid intersection lines greatly increases the efficiency and the reliability of the process.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期96-99,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2002AA6Z3083).
关键词 快速成形 STL模型 布尔运算 线面相交 环探测 rapid prototyping STereo lithography(STL) model boolean operations segment-Facetintersection loop detection.
  • 相关文献

参考文献7

  • 1Kai C C, Jacob G G, Mei T. Interface between CAD and rapid prototyping systems, Part 1 : a study of existing interface[J]. Advanced Manufacturing Technology, 1997, 13: 566-570.
  • 2Sangeeta B. Microfabrication in tissue engineering and bioartificial organs [M]. Boston: Kluwer Academic Publishers, 1999: 45-76.
  • 3Mantyla M. Boolean operations of 2-manifolds through vertex neighborhood classification[J]. ACM Transactions on Graphics, 1986, 5(1): 1-29.
  • 4Zhang Lichao, Han Ming, Huang Shuhuai. An effective error-tolerance slicing algorithm for STL file[J].International Journal of Advanced Manufacturing Technology, 2002, 20: 363-373.
  • 5Moiler T, Trumbore B. Fast, Minimum storage ray/triangle intersection[J]. Journal of Graphics Tools,1997, 2(1): 21-28.
  • 6Schnneider P J, Eberly D H. Geometric tools for computer raphics[M]. Beijing: Publishing House of Electronics Industry, 2004: 201-207.
  • 7Shewchuk J R. Triagnle: a two-dimensional quality mesh generator, http ://www-2. cs. cmu. edu/~ quake/tnangle. html.

同被引文献117

引证文献14

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部