期刊文献+

AISI304不锈钢熔化过程中夹杂物在固-液糊状区漂移与聚集行为的原位观察术 被引量:9

IN SITU OBSERVATION ON MOVEMENT AND AGGLOMERATION OF INCLUSION IN SOLIDLIQUID MUSH ZONE DURING MELTING OF STAINLESS STEEL AISI304
下载PDF
导出
摘要 利用Confocal激光扫描显微镜原位观察了AISI304不锈钢熔化过程中夹杂物在固-液(S-L)糊状区内的漂移与聚集行为.结果显示,夹杂(SiO2-Al2O3-CaO-MgO复合氧化物)在未熔高温铁素体(δ)相间的液相通道中漂移,未熔δ相体积分数为70%时,夹杂的平均漂移速率为80μm/s;近完全熔化时,远离S-L界面的夹杂漂移速率高达1500μm/s,而 S-L界面附近的夹杂速率在50-200μm/s之间;随着熔化的进行,未熔δ相表面逐渐凹凸不平,出现“类亚晶界”.δ相对其附近漂移的夹杂表现出较强的吸附作用;夹杂多在δ-L界面处聚集、自球化; δ相吸附提供了夹杂去除的潜在途径.分析了夹杂运动的动力学机制. The movement and during melting of the stainless steel agglomeration of inclusion in the AISI304 have been observed in solid-liquid (S-L) mush zone situ by using Confocal laser scanning microscope. The results show that the inclusion particles (mixed-xide of SiO2, Al2O3, CaO, and MgO) move through the liquid channels between the unmelting high temperature ferrites (δ). The average movement rate is 80 μm/s when the volume fraction of the un-melting δ is about 70%. Near to absolute melting, the movement rate of the inclusion far away from S-L interface is higher than 1500 μm/s, and that nearby the interface is in the range from 50 μm/s to 200 μm/s. The surface of un-melting δ becomes uneven, and a certain quasi sub-boundary appears during melting. δ absorbs strongly the inclusions moving near the δ-L interface. Most of inclusions agglomerate and granulate close-by the δ-L interface. Adsorption of δ provides a potential method to remove inclusions. The mechanisms for the inclusions movement are discussed.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2006年第7期708-714,共7页 Acta Metallurgica Sinica
基金 上海宝钢集团"十五"重大项目BG010101资助~~
关键词 AISI304不锈钢 夹杂运动 Confocal激光扫描显微镜 原位观察 stainless steel AISI304, inclusion movement, Confocal laser scanning microscopy, in situ observation
  • 相关文献

参考文献21

二级参考文献18

  • 11,Mitchell A,Fukumoto S.Casting of Clean Steel Billets for High Carbon Wire Rod.Proceedings of the 4th Clean Steel Conference.The Institute of Materials,1992.588.
  • 22,Irving B.Methods for Assessment of Non-metallic Inclusions in Steel.Ironmaking and Steelmaking,1994,21(3):174.
  • 33,Auclair G,Meilland R.Methods for Assessment of Cleanliness in Superclean Steels.Rev.Metallurgie,1996,91(1):119.
  • 47,Ruby Meyer F,Willay G.Rapid Identification of Inclusions in Steel by OES-CDI Technique.Rev.Metallurgie,1997,94(3):367.
  • 5HoY H, Hwang W S. ISIJ Int, 1996; 36:1030.
  • 6Thomas B G, Huang X. 76th SteelmaKing Conf Proc, Warrendale: Iron and Steel Society, 1993:273.
  • 7Thomas B G, Denissv A, Bai Hua. 80th Steelmaking Conf Proc, Chicago: Iron and Steel Society, 1997:375.
  • 8Gardin P, Domgin J F, Anderhuber M, Galpin J M,Lamant J Y. The 3rd Int Syrnp on Eleetromagnetic Processing of Materials, Nagoya, Japan, 2000:422.
  • 9Cho M J, Kim S J, Kim I C, Kim J K, Cha D W, Park J H. The 3rd Int Symposium on Electromagnetic Processing of Materials, Nagoya, Japan, 2000:176.
  • 10Sterl A J. Fluid Mech, 1990; 216:161.

共引文献68

同被引文献73

引证文献9

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部