期刊文献+

软测量技术的数据预处理方法研究 被引量:15

Data Pre-processing in Soft Sensor Technology
下载PDF
导出
摘要 针对软测量技术在线实施时的数据预处理问题,提出了基于聚类分析的过失误差侦破方法。该方法不需过程的先验知识和假设,直接面向数据,可十分方便地在线实现。将该方法与滑动平均滤波算法相结合,可以有效处理过程测量数据的过失误差和随机误差,从而提高软仪表估计的精度。在二元精馏塔底产品组分浓度软测量仪表在线进行的仿真中,应用该方法进行数据预处理,使进入软测量模型的过程数据更接近真实值,取得了很好的效果。 Clustering technique is used to detect gross error of data pre-processing in soft sensor technology,The advantage of this method is no need of priory knowledge and assumption of the process. The gross error detection approach is integrated with moving time window average filter algorithm,so the random error and gross error can be handled simultaneously.The application result in a simulated binary distillation column shows that the proposed approach is a good data pre-processing method for soft sensing technology.
作者 罗健旭 常青
出处 《控制工程》 CSCD 2006年第4期298-300,共3页 Control Engineering of China
关键词 过失误差侦破 软测量 聚类分析 gross error detection soft sensing clustering
  • 相关文献

参考文献7

  • 1Yin P Y,Chen L H.A new non-iterative approach for clustering[J].Pattern Recognition Letters,1994,15(2):125-133.
  • 2Chen J,Romagnoli J A.A strategy for simultaneous dynamic data reconciliation and outlier detection[J].Computers and Chemical Engineering,1998,22(1):559-562.
  • 3Abuelzeet Z H,Becerra V M,Robert P D.Combined bias and outlier identification in dynamic data reconciliation[J].Computers and chemical engineering,2002,26(6):921-935.
  • 4罗健旭,邵惠鹤.软测量建模数据的过失误差侦破——一种基于聚类分析的方法[J].仪器仪表学报,2005,26(3):238-241. 被引量:9
  • 5Scogestad S,Morari M.Understanding the dynamic behavior of distillation columns[J].Ind.& Eng.Chem.Res.,1988,27(10):1848-1862.
  • 6Mejdell T,Skogestad S.Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression[J].Ind & Eng Chem Res,1991,30(12):2543-2555.
  • 7Mejdell T,Skogestad S.Output estimation using multiple secondary measurements:high purity distillation[J].AICHE J,1993,39(10):1641-1653.

二级参考文献7

  • 1Yin P Y, Chen L H. A new non-iterative approach for clustering. Pattern Recognition Letters, 1994,15:125~133.
  • 2Chen J, Romagnoli J A. A strategy for simultaneous dynamic data reconciliation and outlier detection. Computers and Chemical Engineering, 1998, 22:559~562.
  • 3Abu-el-zeet Z H, Becerra V M, Roberts P D. Combined bias and outlier identification in dynamic data reconciliation. Computers and Chemical Engineering, 2002, 26:921~935.
  • 4Luo J X, Shao H H. Selecting secondary measurements for soft sensing modeling using rough set theory. Proceedings of the 4th WCICA, World Conference on Intelligent Control and Automation, Shanghai,415~419.
  • 5Mah R S H, Tamhane A C. Detection of gross errors in process data. AIChE J., 1982,28:828~830.
  • 6Tamhane A C, Mah R S H. Data reconciliation and gross error detection in chemical process networks [J]. Technometrics,1985, 27(4):409~422.
  • 7Narasimhan S, Mah R S H. Generalized likelihood ratios for gross error identification[J]. AIChE J, 1987,33(9):1514.

共引文献8

同被引文献170

引证文献15

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部