期刊文献+

基于快速算法的模糊神经网络自适应控制 被引量:1

Fuzzy Neural Network Adaptive Control Based on Fast Parameters Learning Algorithm
下载PDF
导出
摘要 针对过程控制中被控对象常具有非线性、不确定性及参数时变等复杂因素,而难以建立精确的数学模型的情况,提出了一种基于快速学习算法的模糊神经网络自适应预测控制方案。该方案用神经网络作辨识器,模糊神经网络作控制器来实现非线性系统的自适应预测控制。为了克服传统的梯度下降法收敛速度慢、容易陷入局部极小值的缺点,该方案采用递推最小二乘法训练模糊神经网络。仿真结果表明,该方案可以实现模糊控制和神经网络的优势互补,对不确定非线性系统具有很好的控制效果。 To the problem that the eontroUed object is often accompanied by some complex factors such as non-linearity, uncertainty, timevarying parameters, and the difficulty of building an accurate mathematical model, a fuzzy neural network adaptive predictive control scheme based on fast parameter learning algorithm is proposed. A neural network identifter and a fuzzy neural network eontrolhr are applied to realize the adaptive control of nonlinear systems. Instead of gradient descent method, recursive least-square algorithm is used to train the fuzzy neural network to overcome the defect of the low convergence rate and local minimal. Simulation results show that the fuzzy control and neural network can take advantage of each other to possess a good pedormance in the uncertain nonlinear system.
出处 《控制工程》 CSCD 2006年第4期361-363,共3页 Control Engineering of China
关键词 神经网络辨识器 模糊神经网络 自适应预测控制 neural network identifier fuzzy neural network adaptive predictive control
  • 相关文献

参考文献4

二级参考文献17

  • 1谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 2[3]Frayman Y, Wang L. A dynamically-constructed fuzzy neural controller for direct model reference adaptive of multi-inputmulti-output nonlinear processes. Springer-Verlag: 2002; 244-253
  • 3谭永红,IEE Control,1993年
  • 4谭永红,Advances in MPBC,1993年
  • 5谭永红,Dynamic system identification using recurrent neural networks,1993年
  • 6Ku C C,IEEE Trans NS,1992年,39卷,6期,2298页
  • 7Chen S,Int J Control,1990年,51卷,6期,1191页
  • 8卢桂章,现代控制理论基础.数学模型与数学基础,1981年
  • 9Kong S G, Kosko B. Adaptive fuzzy systems for backing up a track and-trailer [J]. IEEE Trans. Neural Networks, 1992,3(2):211 -233
  • 10Jang J R. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Trans. on SMC, 1993,23(3) :665 - 683

共引文献57

同被引文献11

  • 1邵克勇,高宏宇,于显利,杨圆圆,张会珍.不确定非线性系统神经网络自适应控制[J].控制工程,2007,14(1):42-44. 被引量:5
  • 2Kuntze H B,Jacubasch A, Richalet J, et al. On the predictive functional control of an elastic industrial robot [C]. Greece: 25th CDC, Athens, 1986.
  • 3Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and Systems, 1992,45(2) : 135-156.
  • 4Roubos J A, Mollov S, Babuska R, et al. Fuzzy model based predictive control using Takagi-Sugeno model [J]. International Journal of Approximate Reasoning, 1999,22( 1 ) : 3-30.
  • 5Kiriakidis K, Tzes A. Implicit self-tuning fuzzy control for nonlinear systems[C]. Washington: The American Control Conference, 1995.
  • 6Lepetic M, Skrjanc I, Chiacciarini H G, et al. Predictive funetional control based on fuzzy model:magnetic suspension system case study [J]. Engineering Applications of Artificial Intelligence, 2003, 16 (5): 425-430.
  • 7Zikidis K C, Vasilakos A V. ASAFES2 : a novel, neuro-fuzzy architecture for fuzzy computing, based on functional reasoning [J]. Fuzzy Sets and Systems, 1996,83 ( 1 ) : 63-84.
  • 8张泉灵,王树青.基于ARMAX模型自适应预测函数控制[J].信息与控制,2000,29(5):431-436. 被引量:21
  • 9张泉灵,王树青.基于Hammerstein模型的非线性预测函数控制[J].浙江大学学报(工学版),2002,36(2):119-122. 被引量:20
  • 10程美玲,李征,王维工.基于T-S模糊逻辑推理的非线性预测模型[J].控制工程,2003,10(4):346-348. 被引量:2

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部