期刊文献+

一种商业银行客户分割的多维方法——基于客户期望收益和态度的分割模型 被引量:1

A Multi-dimention Customer Segmentation Model for Commercial Banks Based on Customer Anticipatory Earnings Attitude
下载PDF
导出
摘要 客户分割与资源分配是企业一直在努力解决的问题,但目前,空前巨大的客户数据量使得准确进行市场细分和寻找目标市场变得复杂和难以有效实施。通过数据挖掘技术从大型数据库中抽取隐藏的预测信息,利用层次聚类分析建立了一个根据客户的多个态度维度进行客户分割的多维方法。结果表明,以这一方式产生的聚类在同质性较好并且通过参考人口学特征的差别能够获得客户细分市场的轮廓。此外,识别了四个有特色的、表明对信息服务和技术有特殊偏好的客户群。 Retailers have long recognized the importance of tailoring their marketing mixes to suit the specific needs and preferences of different customer groups.However, the access to unprecedented amounts of individual - level customer data may make it increasingly difficult to implement such targeted promotion. To meet this challenge, the paper examines the use of data mining as an alternative means of drawing, data pattem in large databases.In particular, with an agglomerative hierarchical merging method, it builds the model of customer segmentation based on the expected benefits of bank service and attitudes. The results indicate that the clusters generated in this way are more advantageous in their homogeneity and profile to customer segments gained by referring to demographic differences. Additionally, four characteristic groups of customers are identified showing special preferences for and against information services and technology.
出处 《商业研究》 北大核心 2006年第13期1-6,共6页 Commercial Research
基金 国家自然科学基金资助项目 项目名称:企业客户关系管理中服务机理与支持平台的研究 项目编号:70271030 国家教育部社科基金规划基金项目 项目名称:高频金融时间序列预测数据挖掘方法研究 项目编号:474357
关键词 客户分割模型 客户态度 层次聚类分析法 customer segmentation model customer attitude Agglomerative hierarchical merging method
  • 相关文献

参考文献25

  • 1Zeithaml V A,Bitner Mary Jo[M].Services Marketing,New York,NY:McGraw-Hill Companies.
  • 2Baesens B,Viaene S,Poel D,et al.Bayesian neural network for repeat purchase modelling in direct marketing.European Journal of Operational Research,2002,138:191-211.
  • 3Davies F,Moutinho L,Curry B.ATM attitudes:a neural network analysis.Marketing Intelligence and Planning,1996,14(2):26-32.
  • 4Moutinho L,Davies F,Curry B.The impact of gender on car buyer satisfaction and loyalty.Journal of Retailing and Consumer Sciences,1996,3(3):135-144.
  • 5Dasgupta C G,Dispensa G S,Ghose S.Comparing the predictive performance of a neural network model with some traditional market response models.International Journal of Forecasting,1994,(10):235-244.
  • 6Hruschka H,Natter M.Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation.European Journal of Operational Research,1999,114:346-353.
  • 7Chaturvedi A,Carroll J D,Green P E,et al.A feature-based approach to market segmentation via overlapping K-centroids clustering.Journal of Marketing Research,1997,34:370-377.
  • 8Weber R.Customer segmentation for banks and insurance groups with fuzzy clustering techniques.In J.F.Baldwin (Ed.),Fuzzy logic.New York:Wiley,1996.
  • 9Mangiameli P,Chen S K,West D A.Comparison of SOM neural network and hierarchical clustering methods.European Journal of Operational Research,1996,93(2):402-417.
  • 10Speed R,Smith G.Retail financial service segmentation[J].The Service Industries Journal,1992,12 (3):368-383.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部