期刊文献+

自适应图像插值在超分辨率图像重建中的应用 被引量:4

Super-resolution image reconstruction using adaptive interpolation method
下载PDF
导出
摘要 超分辨率技术的目的在于恢复高频信息,以使图像获得更多的细节信息,同时还要能消除各种噪声的影响,图像插值方法是一个基本的消除采样误差和虚假响应的手段,它是超分辨率重建的一个重要步骤。该文使用一种自适应的插值方法来进行超分辨率图像重建,并与传统插值方法的超分辨率图像重建结果相比较,重建结果要优于传统插值方法。 The super-resolution technique is used to rebuild the high frequency ot images, meanwhile reducing the affection of various kinds of noises. Image interpolation, an effective way of reducing sampling error and artificial response,is an important step in super-resolution rebuilding. In this paper, an adaptive interpolation method is used,and the reconstruction result is compared with that by using traditional interpolation methods. The image obtained by using the presented method is satisfying.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第7期825-829,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60375011) 安徽省优秀青年科技基金资助项目(04042044) 教育部"新世纪优秀人才计划"资助项目
关键词 超分辨率 图像插值 图像序列 运动估计 自适应 super-resolution image interpolation image series motion estimation adaptiveness
  • 相关文献

参考文献28

  • 1Harris J L.Diffraction and resolving power[J].J O S A,1964,54(7):931-936.
  • 2Goodman J W.Introduction to Fourier optics[M].New York:McGraw Hill,1968.127-142.
  • 3Park S C.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing magazine,2003,20(3):21-36.
  • 4Andrews H C,Hunt B R.Digital image restoration[M].Englewood Cliffs,NJ:prentice Hall,1977.45-81.
  • 5Huang T S,Tsay R Y.Multi-frame image restoration and registration[A].Advances in Computer Vision and Image Processing[C].Greenwich,CT:JAI,1984.317-339.
  • 6Irani M,Peleg S.Improving resolution by image registration[J].Computer Vision,Graphic,and Image Processing,1991,53(3):231-239.
  • 7Stark H,Oskoui P.High-resolution image recovery from image-plane arrays using convex projections[J].Journal of the Optical Society of America A,1989,6 (11):1 715-1 726.
  • 8Baker S,Kanade T.Limits on super-resolution and how to break them[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24:1 167-1 183.
  • 9Elad M,Feuer A.Restoration of single super-resolution image from several blurred,noisy and down-sampled measured images[J].IEEE Transactions on Image Processing,1997,6(12):1 646-1 658.
  • 10Elad M,Feuer A.Super-resolution reconstruction of image sequences[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21:817-834.

同被引文献32

  • 1金海丁,周孝宽.数字图像自适应插值法[J].激光与红外,2006,36(9):907-910. 被引量:15
  • 2Lukin A, Kubasov D. High-quality algorithm for Bayer Pattern interpolation[ J ]. Programming and Computer Software, 2004,30 ( 6 ) : 347 - 358.
  • 3El-Khamy S E, Hadhoud M M, Dessouky M I, et al. Efficient implementation of image interpolation as an inverse problem [ J ]. Digital Signal Processing. 2005 ( 15 ) : 137 - 152.
  • 4Mei-Juan Chen, Chin-Hui Huang, Wen-Li Lee. A fast edge-oriented algorithm for image interpolation[ J]. Image and Vision Computing,2005 (23) :791 -798.
  • 5Irani M, Peleg S. Improving remlution by image registration[J ]. Computer Vision, Graphic, and Image Processing, 1991, 53(3) : 231-239.
  • 6Park S C, Park M K, Kang M G. Super-resolmion image reconstruction: A mchnical overview[J ]. IEEE signal prcceasing magazine, 2003(5): 21-36.
  • 7Said A, Pearhnan W A. An image multi-resolution representation for lossless and lossy compressinn[J]. IEEE Trans Image Processing, 1996, 29(5): 47.5-478.
  • 8Park S C, Park M K, Kang M G, Super-resolution image reconstruction: A technical overview[J ]. IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 9Akyildiz I F, Melodia T, Chowdury K R. Wireless mul- timedia sensor networks., a survey [J]. IEEE on Wireless Communications, 2007,14 (6) 32 - 39.
  • 10Zhou Liang, Geller t3,Zheng Baoyu. System scheduling for multi-description video streaming over wireless multi-hop networks [- J . IEEE Transactions on Broadcasting, 2009,5 (4) : 731 - 741.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部