期刊文献+

二维不可压缩流体界面的数值模拟 被引量:2

Numerical simulation of 2D interface of incompressible fluids
下载PDF
导出
摘要 采用基于MAC交错网格的变密度投影方法求解Navier-Stokes方程以及用VOF/PLIC方法追踪运动界面,直接模拟了capillary wave算例和经典的平面混合层算例,计算结果与精确解以及已有的研究结果符合良好.同时计算了含表面张力的两相平面剪切流动模型和平面迹模型,直接验证了已有文献的结果,并发现了平面迹失稳破碎过程中的相邻涡和相邻峰的合并现象. The Navier-Stokes equations were solved on a marker-and-cell (MAC) staggered finite-difference grid together with a projection algorithm for the pressure, and a VOF/PLIC method was used to capture the motion of interfaces. Examples and verifications of the method were given by comparing simulations with analytical results and other numerical solutions, for capillary waves and two dimensional shear flows at finite Reynolds number. In the case of two-dimensional wakes, combinations of the adjacent vortices and the adjacent crests of waves can be observed on the breaking process.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2006年第6期641-645,共5页 JUSTC
基金 国家自然科学基金(10172082)资助
关键词 VOF/PLIC方法 交界面 投影法 表面张力 VOF/PLIC method interface projection method surface tension
  • 相关文献

参考文献8

  • 1Scardovelli R,Zaleski S.Direct numerical simulation of free-surface and interface[J].Annu.Rev.Fluid Mech.,1999,31:567-603.
  • 2Abgrall R.How to prevent pressure oscillations in multicomponent flow calculations:a quasi conservative approach[J].J.Comput.Phys.,1996,125(1):150-160.
  • 3马东军,蔡勇,孙德军,尹协远.两种多介质流体可压缩流动界面捕捉方法的数值研究(英文)[J].中国科学技术大学学报,2002,32(2):186-193. 被引量:2
  • 4Gueyffier D,Li J,Nadim A,Scardovelli R,et al.Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J].J.Comput.Phys.,1999,152(2):423-456.
  • 5Hou T Y,Lowengrub J S,Shelley M J.The long-time motion of vortex sheets with with surface tension[J].Phys.Fluids,1997,9(7):1 933-1 954.
  • 6Tauber W,Unverdi S O,Tryggvason G.The nonlinear behavior of a sheared immiscible fluid interface[J].Physics of Fluids,2002,14(8):2 871-2 885.
  • 7Lafaurie B,Nardone C,Scardovelli R,et al.Modelling merging and fragmentation in multiphase flows with SURFER[J].J.Comput.Phys.,1994,113(1):134-147.
  • 8Prosperetti A.Motion of two superposed viscous fluids[J].Physics of Fluids,1981,24(7):1 217-1 223.

二级参考文献14

  • 1[1]Chern I L, Glimm J, McBryan O, Plohr B, and Yaniv S. Front tracking for gas dynamics[J]. J Comp. Phys., 1986,62:83.
  • 2[2]Glimm J, Grove J W, Li X L, Shyue K M et al. Three-dimensional front tracking[J]. SIAM J Sci. Comput., 1998,19:703-727.
  • 3[3]Abgrall R. How to prevent pressure oscillations in multi-component flow calculations: a quasi-conservative approach[J]. J Comput. Phys.,1996,125:150.
  • 4[4]Karni S. Multi-component flow calculaitons by a consistent primitive algorithm[J]. J Comput. Phys.,1994,112:31-43.
  • 5[5]Shyue K M. An efficient shock-capturing algorithm for compressible multicomponent problems[J]. J Comput. Phys.,1998,142:208-242.
  • 6[6]Shyue K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state[J]. J Comput. Phys.,1999,156:43-88.
  • 7[7]Mulder W, Osher S, Sethian J A. Computing interface motion in compressible gas dynamics[J]. J Comp. Phys.,1992,100:209-228.
  • 8[8]Li X L, Jin B X, Glimm J Numerical study for the three-dimensional Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation[J]. J Comp. Phys.,1996,126:343-355.
  • 9[9]Fedkiw R P, et al. A non-oscillatory eulerian approach to interface in multimaterial flows(the ghost fluid method)[J]. J Comput. Phys.,1999,152:457-492.
  • 10[10]Colella P.& Woodward P. The piecewise parabolic method(PPM) for gas-dynamical simulations[J]. J Comput. Phys.,1984,54:174-201.

共引文献1

同被引文献18

  • 1魏大忠,张人佶,吴任东,周浩颖.压电驱动微滴喷射过程的数学模型[J].中国机械工程,2005,16(7):611-614. 被引量:19
  • 2柯道友,彭楠,孟勐,李思.固定汽泡周围的温度场分布[J].清华大学学报(自然科学版),2006,46(2):218-221. 被引量:4
  • 3赵建福,万士昕,刘刚.过冷池沸腾落塔短时微重力实验研究[J].工程热物理学报,2007,28(1):98-100. 被引量:4
  • 4陈之航.气液两相流动和传热[M].北京:机械工业出版社,1983.
  • 5Lee D J. Bubble departure radius under microgravity [J]. Chemical Engineering Communications, 1992, 117(1) : 175-189.
  • 6Zhao J F, Liu G, Wan S X, et al. Bubble dynamics in nucleate pool boiling on thin wires in microgravity[J]. Microgravity Science and Technology, 2008, 20(2): 81 89.
  • 7Bhunia A, Kamotani Y. Flow around a bubble on a heated wall in a cross-flowing liquid under microgravity condition[J]. International Journal of Heat and Mass Transfer, 2001, 44:3 895-3 905.
  • 8Siegel R, Keshock E G. Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water [J]. AIChE Journal, 1963, 10 (4): 509-517.
  • 9Iguchi M, Terauchi Y. Microgravity effects on the rising velocity of bubbles and slugs in vertical pipes of good and poor wettability[J]. International Journal of Multiphase Flow, 2001, 27:2 189-2 198.
  • 10Hoffman R L. Study of the advancing interface, Part Ⅰ:Interface shape in liquid-gas systems [J]. Journal of Colloid and Interface Science, 1975, 50:228-241.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部