摘要
利用锥理论和非对称迭代方法,讨论了不具有连续性和紧性条件的增算子方程解的存在唯一性,作为其应用着重讨论了非增算子方程解的存在唯一性,并给出了迭代序列收敛于解的误差估计,改进和推广了某些已知结果.
By using the cone theory and non-symmetry iteration method, it is studied the existence and uniqueness of solutions of increasing operator equations without continuity and compactness conditions. For it's application, it is mainly studied the existence and uniqueness of solutions of non-increasing operator equations. And the iteration sequences which converge to solution of operator equations and the error estimates are also given.The results presented here improve and generalize some corresponding results.
出处
《河南科学》
2006年第4期474-476,共3页
Henan Science
基金
河南省教委科研基金资助项目(200410483004)
商丘师范学院重点学科资助
关键词
锥与半序
增算子
非对称迭代
不动点
cone and partial ordering
Increasing operator
non-symmetric iteration
fixed point