摘要
为了探讨钢管混凝土柱.钢梁平面框架的抗震性能,本文进行了12个框架试件在恒定轴力和水平反复荷载作用下的试验研究,主要考察了柱截面形状(圆形、方形)、含钢率(圆形:α=0.06,0.103;方形:α=0.125,0.126)、柱轴压比(圆形:n=0.06~0.60;方形:n=0.04~0.60)、梁柱线刚度比(圆形:i=0.36~0.58;方形:i=0.34~0.62)等参数对其力学性能的影响。试验结果表明:钢管混凝土柱.钢梁框架滞回曲线较为饱满,强度和刚度退化不明显;柱轴压比和含钢率对框架的承载力和抗震性能影响较大,随着轴压比的增大,框架的水平极限承载力下降,位移延性和耗能能力降低,而含钢率影响规律则相反;圆形截面柱框架抗震性能整体上优于方形截面柱框架。按照《钢管混凝土结构技术规程》(DBJ13—51—2003)设计的钢管混凝土框架能够满足结构抗震设计要求。
In order to realize the seismic behavior of concrete filled CHS (circular hollow section) and SHS (square hollow section) columns and steel beam planar frames, twelve test specimens were experimentally studied under constant axial load and cyclically lateral load. The column shape (CHS and SHS), steel ratio of the column section(CHS: α = 0.06,0.103; SHS: α = 0.125,0.126), axial load level of column(CHS: n = 0.06 - 0.60; SHS:n = 0.04- 0.60), linear stiffness ratio of steel beam's to column's(CHS: i = 0.36 - 0.58;SHS: i = 0.34 - 0.62), are all considered as experimental parameters. The test results show that the lateral load (P) versus lateral displacement hysteretic curves of the frames are plump shuttle shape. The curves have no obvious strength and stiffness degradation. The axial load level of columns and steel ratio of the section have a evident effect on the strength and seismic behavior of the frames, and with the increase of axial load level of columns, the lateral ultimate strength of the frames become low, and the ductility of displacement and the capacity of energy dissipation also become descending, but the steel ratio has the opposite results. The frames with concrete filled CHS columns have a better seismic behavior than the frames with concrete filled SHS columns. All the test frames which design by the specification DBJ 13--51--2003 can meet the requirements of seismic design.
出处
《建筑结构学报》
EI
CAS
CSCD
北大核心
2006年第3期48-58,共11页
Journal of Building Structures
基金
国家杰出青年科学基金资助项目(50425823)
福建省引进高层次人才科研启动费资助
清华大学"百人引进计划"专项经费资助项目
关键词
钢管混凝土柱
钢梁
框架
抗震性能
延性
耗能
concrete filled CHS(or SHS) columns
steel beams
frames
seismic behavior
ductility
energy dissipation