期刊文献+

调制与解调用于随机共振的微弱周期信号检测 被引量:47

Modulation and demodulation for detecting weak periodic signal of stochastic resonance
原文传递
导出
摘要 提出了调制随机共振方法,实现了在大参数条件下从强噪声中检测微弱周期信号.将混于噪声中的较高频率的弱信号经调制变为一差频的低频信号作用于随机共振体系,该低频信号满足绝热近似理论,因而能产生随机共振;再经解调可获得埋于噪声中的原较高频率的弱信号.对埋于噪声中的未知频率,可采用连续改变调制振荡器的频率,以获得一个适当的差频信号输入到随机共振体系,根据输出信号共振谱峰的变化经解调而得待检弱信号的未知频率.该方法应具有较高的应用前景. Modulated stoebastic resonance method which can detect weak periodic signals under strong noise in wide parameter conditions is proposed in this paper. The high frequency weak signal mixed with noise is modulated to a low frequency difference signal. The signal conforms to the adiabatic elimination theory. So when it acts on stochastic resonance system, the stoebastic resonance can arise. If the low frequency signal is demodulated, the original high frequency weak signal mixed with noise can be relrieved. To deal with the unknown frequency mixed with noise, the frequency of modulate oscillator is changed continuously to achieve a suitable difference frequency signal for inputting to stochastic resonance system. According to the change of resonance spectral peak value, the unknown frequency can be found from the demodulated signal. The method is effective for future application.
作者 林敏 黄咏梅
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第7期3277-3282,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60274008) 浙江省自然科学基金(批准号:Y104338)资助的课题.~~
关键词 调制与解调 非线性双稳系统 随机共振 微弱信号检测 modulation and demodulation, nonlinear system, stochastic resonance, weak signal detection
  • 相关文献

参考文献3

二级参考文献16

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2[1]Gammaitoni L et al 1998 Rev.Mod.Phys.70 23
  • 3[2]Bulsara A R and Gammaitoni L 1996 Phys.Today 49 39
  • 4[3]Godivier X and Chapeau-Blondeau F 1997 Signal Proc.56 293
  • 5[6]Nicolis G and Prigogine I 1997 Self-Organization in Nonequilibrium System(New York:Wiley)
  • 6[10]Chapean-Blondeau F 2000 Phys.Rev.E 61 940
  • 7[11]Vilar J M G and Rubi J M 1997 Phys.Rev.Lett.78 2882
  • 8[13]Gingl Z,Vajtai R and Kiss L B 2000 Chaos Solitons Fractals 11 1929
  • 9Benzi R, Sutera A and Vulpiani A .1981 J Phys. A 14 453.
  • 10Gong D C, Qin G R, Hu G and Wen X D .1991 Phys Lett. A159 147.

共引文献227

同被引文献406

引证文献47

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部