期刊文献+

Mo掺杂SrBi_4Ti_4O_(15)陶瓷的铁电介电性能 被引量:2

Ferroelectric and dielectric properties of Mo-doped SrBi_4Ti_4O_(15) ceramics
原文传递
导出
摘要 用传统的固相烧结工艺,制备了钼掺杂铁电陶瓷样品SrBi4Ti4O15(SBTi)铁电陶瓷SrBi4-2x/3Ti4-xMoxO15(x=0.00,0.003,0.012,0.03,0.06,0.09).X射线衍射的结果表明,样品均为单一的层状钙钛矿结构相,Mo掺杂未改变SBTi的晶体结构.通过扫描电子显微镜观测发现,样品晶粒为片状,随掺杂量的增加,晶粒逐渐变小.铁电测量表明,Mo掺杂使SBTi的铁电性能得到较大改善.随掺杂量x的增加,样品的剩余极化(2Pr)呈现出先增大,后减小的规律.在x=0.06时,2Pr达到最大值26.5μC/cm2,与SrBi4Ti4O15(2Pr=12.2μC/cm2)相比,提高117%.材料的矫顽场Ec在掺杂后增加仅为20%左右.SBTi的居里温度受掺杂的影响甚微,说明Mo对SrBi4Ti4O15的掺杂基本未影响材料原有的良好的热稳定性. The ferroelectric ceramics samples of SrBi4-x3Ti4-xM%O15 (x = 0.00, 0.003, 0.012, 0.03, 0.06, 0.09) have been prepared by the conventional solid-state reaction method. X-ray diffraction analysis shows that the crystal structure of SrBi4Ti4 O15 (SBTi) is not affected by Mo-dopiag. The scanning electronics microscope (SEM) images indicate that all the samples consist of sheet grains and the grain size is reduced by Mo-doping while the ferroeleetrie properties are improved significantly. The remanent polarization (2Pr) increases at first,then decreases with the inereasiag Mo content. At x = 0.06, the 2Pr maximizes at a value of 26.5 μC/cm^2 , which about 117% higher in comparison with that of SBTi. And the coercive field of SBTi is increased only about 20%. The Curie temperature of the samples varied slightly after doping, which implies that the good thermal stability of SBTi is not sacrificed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第7期3716-3720,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10274066)资助的课题.~~
关键词 SRBI4TI4O15 Mo掺杂 剩余极化 居里温度 Srli4Ti4O15 , Mo-doping, remanent polarization, Curie temperature
  • 相关文献

参考文献2

二级参考文献38

  • 1Park B H, Kang B S, Bu S D et al 1999 Nature 401 683.
  • 2Zhao M L, Wang C L, Zhong W L, Zhang p L and Wang J F 2002.Acta Phys. Sin. 51 420 (in Chinese).
  • 3Irie H, Miyayama M and Kudo T 2001 .J. Appl. Phys. 90 4089.
  • 4Yang P X, Deng H M and Zhu J H 1998 Acta Phys. Sin. 47 1222.(in Chinese).
  • 5Taylor D J, Jones R E and Zurcher P et al 1996, Appl. Phys.Lett. 682300.
  • 6Joshi P C and Krupanidhi S B 1993 Appl. Phys. Lett. 62 1928.
  • 7Chon U, Kim K B, Jang H M et al 2001 Appl. Phys. Let. 793137.
  • 8Lee H N, Hesse D, Zakharov N et al 2002 Science 296 2006.
  • 9Osada M, Tada M, Kakihana M et al 2001 Jpn J. Appl. Phys. 405572.
  • 10Shimakawaa Y, Kubo Y, Tauchi Y et al 2001 Appl. Phys. Lett.79 2791.

共引文献24

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部