期刊文献+

求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法 被引量:15

An Improved Particle Swarm Optimization Algorithm Embedded with Greedy Search for Solution of Unit Commitment
下载PDF
导出
摘要 提出了一种求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法。其特点包括:采用固定阈值处理表示机组运行状态的0、1整型变量,从而可直接应用粒子群算法求解机组组合问题,避免求解各时段中的经济负荷分配子问题;在粒子群算法迭代过程中应用变异操作更新进化速度缓慢的粒子,增强了算法的搜索能力;算法收敛后,采用基于优先列表的贪婪搜索机制做进一步寻优,既加快了算法收敛速度,又提高了解的质量。算例结果表明所提出的方法在求解机组组合问题时具有很强的搜索能力和适应性。 To solve unit commitment (UC) an improved particle swarm optimization algorithm is proposed, in which greedy search is embedded. The features of the proposed method are as following: the integer variables representing units' operation states are processed by fixed threshold, thus UC can be directly solved by algorithm and the sub-problems particle swarm optimization of economic dispatch in each time interval can be avoided; in the iteration of particle swarm optimization the slow evolution particles are renewed by mutation operation, so the search capability of the algorithm is enhanced; after the algorithm is converged, through the further search by use of greedy search based on priority list (PL), the convergence is accelerated as well as the quality of the solution is improved. The proposed algorithm is tested and verified by two UC cases, the calculation results show that the proposed method possesses efficient search capability and adaptability.
出处 《电网技术》 EI CSCD 北大核心 2006年第13期44-48,65,共6页 Power System Technology
关键词 粒子群优化算法 优先列表 贪婪搜索 变异操作 机组组合 经济负荷分配 particle swarm optimization algorithm priority list greedy search mutation operation unit commitment economic dispatch
  • 相关文献

参考文献21

  • 1Quyang Z,Shahidehpour S M.A hybrid artificial neural network-dynamic programming approach to unit commitment[J].IEEE Trans on Power Systems,1992,7(10):339-350.
  • 2Juste K A,Kita H,Tanaka E,et al.An evolutionary programming to the unit commitment problem[J].IEEE Trans on Power Systems,1999,14(4):1452-1459.
  • 3陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,19(12):9-13. 被引量:75
  • 4El-Saadavi M M,Tantawi M A,Tawfik E.A fuzzy optimization-based approach to large scale thermal unit commitment[J].Electric Power Systems Research,2004,72(3):245-252.
  • 5Senjyu T,Yamashiro H,Uezato K,et al.A unit commitment problem by using genetic algorithm based on unit characteristic classification[C].IEEE Power Engineering Society Winter Meeting,2002,1:58-63.
  • 6Damousis I G,Bakirtzis A G,Dokopoulos P S,et al.A solution to the unit-commitment problem using integer-coded genetic algorithm[J].IEEE Trans on Power Systems,2004,19(2):1165-1172.
  • 7孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J].中国电机工程学报,2006,26(2):82-87. 被引量:64
  • 8Shi L,Jin H,Zhou J,et al.Ant colony optimization algorithm with random perturbation behavior to the problem of optimal unit commitment with probabilistic spinning reserve determination[J].Electric Power Systems Research,2004,69(2-3):295-303.
  • 9袁晓辉,王乘,袁艳斌,张勇传.一种求解机组组合问题的新型改进粒子群方法[J].电力系统自动化,2005,29(1):34-38. 被引量:39
  • 10胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法[J].中国电机工程学报,2004,24(4):24-28. 被引量:132

二级参考文献183

共引文献795

同被引文献158

引证文献15

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部