期刊文献+

一类具偏差变元的二阶微分方程周期解 被引量:3

Periodic Solutions for a Kind of Second Order Differential Equation With a Deviating Argument
下载PDF
导出
摘要 利用M ahwin重合度拓展定理研究了一类具偏差变元的二阶微分方程x″(t)+f(x'(t))+h(x(t))x'(t)+g(x(t-τ(t)))=p(t)周期解问题,得到了周期解存在的一组充分条件。 By employing the continuation theorem of coincidence degree theory developed by Mawhin, we study a kind of second order with a deviating argument like x"(t)+f(x'(t))+h(x(t))x'(t)+g(x(t-τ(t)))=p(t), we get some sufficient conditions.
作者 杜波
出处 《安庆师范学院学报(自然科学版)》 2006年第2期12-14,共3页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省教育厅自然科学基金重点项目(2005kj031ZD) 安徽省自然科学基金项目(050460103)
关键词 周期解 重合度 偏差变元 periodic solutions ,coincidence degree, deviating argument
  • 相关文献

参考文献3

  • 1鲁世平,葛渭高,郑祖庥.具偏差变元的Rayleigh方程周期解问题[J].数学学报(中文版),2004,47(2):299-304. 被引量:35
  • 2Wang G.Q.,A priori bounds for periodic solutions of a delay Rayleigh equation[J].Applied Mathematics Letters,1999,(12):41-44.
  • 3Gaines R,Mawwhin J.,Coincide Degree and Nonlinear Differential Equation[M].Berlin:Springer Verlag,1977.

二级参考文献8

  • 1Gaines R. E., Mawhin J. L., Coincidence degree and nonlinear differential equations, Berlin: Springer-Verlag,1977.
  • 2Liu F., Existence of periodic solutions to a class of second order nonlinear differential equations, Acta Math.Sinica, 1990, 33(2): 260-269 (in Chinese).
  • 3Liu F., On the existence of periodic solutions of Rayleigh equation, Aeta Math. Sinica, 1994, 87(5): 639-644(in Chinese).
  • 4Huang X. K, Xiang Z. G., On the existence of 2π-periodic solution for delay Duffing equation x"(t)+g(x(t-τ))=p(t), Chinese Science Bulletin, 1994, 39(3): 201-203 (in Chinese).
  • 5Ma S. W., Wang Z. C., Yu J. S., Coincidence degree and periodic solutions of Dufling equations, Nonlinear Analysis, TMA, 1998, 84: 443-460.
  • 6Lu S. P., Ge W. G., On the existence of periodic solutions of second order differential equations with deviating arguments, Acta. Math. Sinica, 2002, 45(4): 811-818 (in Chinese).
  • 7Lu S. P., Ge W. G., Periodic solutions for a kind of second order differential equations with multiple deviating arguments, Applied Mathematics and Computation, 2003, 146(1): 195-209.
  • 8Wang G. Q., A priori bounds for periodic solutions of a delay Rayleigh equation, Applied Mathematics Letters,1999, 12: 41-44.

共引文献34

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部