期刊文献+

植物叶序的几何计量分析 被引量:3

An analysis of geometry metrology on the phyllotaxis of plants
下载PDF
导出
摘要 采用差分方程理论和互生植物叶序分数序列的极限2ω导出植物对生叶序序列和叶序分数.首次建立了植物对生叶序分数序列极限对应的角为πω2,求出具有生物学意义的植物对生叶序几何计量序列为1/2,1/6,2/8,3/14,…….依据该序列对杭州植物园的对生叶序植物种类进行分析,结果表明:常见的对生叶序植物中,属于1/2式的植物种类较为常见,特征是叶片呈上下平行着生的方式;属1/6式的植物较少见,叶片呈东南-西北、东北-西南向着生;属2/8式的植物最为常见,叶片呈正东西、南北向着生. Based on the theory of difference equation and the limit ω^2 of phyllotaxis modeling at alternate plants, a modeling of the opposite phyllotaxis is inferred. It presents a novel hypothesis that the limit angle of the opposite phyllotaxis in plants is a πω^2 by the theory of analogy at first time. According to the πω^2 and the theory of difference equation, it gets that a geometry modeling group on the signification of biology about the opposite phyllotaxis of plants should be 1/2, 1/6, 2/8, 3/14, …… . Using the modeling group to analyse the forms of phyllotaxis at the opposite plants, the results indicate that form 1/2 of the leaf number is a form toward the parallel up-down and it is easy to find plants in common such as Lagerstroemia limii, L. indica, etc. The form 1/6 of the leaf number is towards the south-east + north-west and north-east + south-west, e. g. , Vinca majos, V. majos cv. 'Variegata' etc. and it is not easy to find them. Then the form 2/8 of the leaf number is towards the west-east + north-southt and it is very easy to find them, that is, Buxus sinica, Jasminum mesnyi , etc.
出处 《中国计量学院学报》 2006年第2期99-102,共4页 Journal of China Jiliang University
关键词 对生叶 互生叶 叶序 差分方程 几何计量 opposite leaf alternate leaf phyllotaxis difference equation geometry metrology
  • 相关文献

参考文献16

  • 1LEE H W,LEVITOV L S.Universality in phyllotaxis:Amechanical theory[M].London:World Scientific,1998:619-653.
  • 2GREEN P B.STEELE C R,RENNICH S C.Phyllotactic physical mechanism for their origin[J].Ann Bot,1996,515-527.
  • 3LEVITOV L S.Energetic approach to phyllotaxis[J] Eurnphys Lett,1991,14 (6):533-539.
  • 4SCHWABE W W.The role and importance of vertical spacing at the Plantex in determining the phyllotactic pattern[M].London:World Scientific,1998:523-535.
  • 5YOUNG D A.On the diffusion theory of phyllotaxis[J].J Theor Biol,1978,71:421-432.
  • 6THORNLEY J H M.Phyllotaxis I:A mechanistic model[J].AnnBot,1975,39:491-507.
  • 7ERICKSON R O.The geometry of phyllotaxis,the growth and functioning of leaves[M].Cambrideg:Cambridge University Press,1983:55-88.
  • 8CHAI Z L,WANG L Z.Distribution law of plant phyllotaxis by mathematics[A].TAN J B,WEN X F,ISIST'022nd international symposium on instrumentation science and technology[C].Harbin:Harbin Institute of Technology Press,2002:703-707.
  • 9柴中林.关于植物叶序分布规律的斐波那契-卢卡斯序列的解[J].中国计量学院学报,2002,13(3):210-213. 被引量:10
  • 10中国植物学会数量分类学专业委员会.论植物叶序的亚黄金分割[M].王兰州.数量分类学与微机信息处理研究进展.昆明:云南科技出版社,1997,128-132.

二级参考文献8

  • 1柴中林.关于植物叶序分布规律的斐波那契-卢卡斯序列的解[J].中国计量学院学报,2002,13(3):210-213. 被引量:10
  • 2[1]王兰州. 论植物叶序的亚黄金分割<数量分类学与微机信息处理研究进展>[M]. 昆明:云南科技出版社,1997.
  • 3[3]华罗庚. 优选法[M]. 北京:科学出版社, 1981.
  • 4JeanRV(王本楠译).植物生长模式与形态的数理研究方法[M].北京:学术书刊出版社,1984.1-40.
  • 5中国大百科全书总编辑委员会《生物学》编辑委员会.中国大百科全书生物学Ⅲ[M].北京:中国大百科全书出版社,1992.2028-2030.
  • 6Chai Z L, Wang L Z. Distribution law of plant phyllotaxis by mathematics. Tan Jiubin, Wen Xianfang,ISIST'2002 2nd international symposium on instrumentation science and technology[C]. Harbin: Harbin Institute of Technology Press, 2002, 703-707.
  • 7王兰州.论植物叶序的亚黄金分割,《数量分类学与微机信息处理研究进展》[M].昆明:云南科技出版社,1997.128-132.
  • 8王汝发,李德生.他们的分歧在哪里──评陈之藩、萧昌建二教授关于"黄金分割"问题的讨论[J].成都大学学报(自然科学版),1998,17(1):28-31. 被引量:2

共引文献16

同被引文献67

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部