摘要
Cockayne E J引入了一个图G的k-符号控制数γk-s11(G)的概念,提出了如下猜想:对任意n阶连通图G和正整数k(n2<k≤n),均有γk-s11(G)≤2k-n。我们证明了3方体Q3的5-符号控制数γ-5s11(Q3)=4,从而否定了这个猜想。此外,我们还给出了3-正则二部图k-符号控制数的一个上界,即证明了:对于任意n阶3-正则二部图G和正整数k(n2+1≤k≤n),均有γ-ks11(G)≤2(k+1)-n成立。
Abstract:Cockayne E J introduced the concept of the signed k - subdomination number γks^-11 (G) of a graph G,posed a conjecture as follows:For any connected graph G of order n and integer k(n/2〈k≤n) ,then γks^-11(G)≤2k - n. This paper prove that γSs^-11 ( Q3 ) = 4 for the 3 - Cube Q3, and hence disprove the conjecture. In addition, we - n give an upper bound of the signed k - subdomination numbers for 3 - regular bipartite graphs, that is, k(n/2+1≤k≤n) holds for all 3 - regular bipartite graphs G and positive integers γks^-11(G)≤2(k + 1) - n.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2006年第3期230-232,共3页
Journal of Nanchang University(Natural Science)
基金
江西省教育厅科学技术研究项目(2005122)
江西省自然基金资助项目(0311047)
关键词
符号控制函数
符号控制数
k-符号控制函数
k-符号控制数
signed dominating function
signed domination number
signed k - subdominating function
signed k -subdomination number