期刊文献+

关于Cockayne E J等人的一个猜想 被引量:1

On a Conjecture of Cockayne E J etc.
下载PDF
导出
摘要 Cockayne E J引入了一个图G的k-符号控制数γk-s11(G)的概念,提出了如下猜想:对任意n阶连通图G和正整数k(n2<k≤n),均有γk-s11(G)≤2k-n。我们证明了3方体Q3的5-符号控制数γ-5s11(Q3)=4,从而否定了这个猜想。此外,我们还给出了3-正则二部图k-符号控制数的一个上界,即证明了:对于任意n阶3-正则二部图G和正整数k(n2+1≤k≤n),均有γ-ks11(G)≤2(k+1)-n成立。 Abstract:Cockayne E J introduced the concept of the signed k - subdomination number γks^-11 (G) of a graph G,posed a conjecture as follows:For any connected graph G of order n and integer k(n/2〈k≤n) ,then γks^-11(G)≤2k - n. This paper prove that γSs^-11 ( Q3 ) = 4 for the 3 - Cube Q3, and hence disprove the conjecture. In addition, we - n give an upper bound of the signed k - subdomination numbers for 3 - regular bipartite graphs, that is, k(n/2+1≤k≤n) holds for all 3 - regular bipartite graphs G and positive integers γks^-11(G)≤2(k + 1) - n.
作者 徐保根
出处 《南昌大学学报(理科版)》 CAS 北大核心 2006年第3期230-232,共3页 Journal of Nanchang University(Natural Science)
基金 江西省教育厅科学技术研究项目(2005122) 江西省自然基金资助项目(0311047)
关键词 符号控制函数 符号控制数 k-符号控制函数 k-符号控制数 signed dominating function signed domination number signed k - subdominating function signed k -subdomination number
  • 相关文献

参考文献7

  • 1HaynesT W,Hedetniemi S T.Slater P J.Domination in Graphs[M].New York,1998:95-105.
  • 2Cockayne E J,Mynhardt C M.On A Generalization of Signed Dominating Function of Graphs[J].Ars Combin,1996,43:235-245.
  • 3Zhang Zhongfu,Xu Baogen.A Note on the Lower Bounds of Signed Domination Numbers of a Graph[J].Discrete Math.1999,195:295-298.
  • 4徐保根.On Minus Domination and Signed Domination in Graphs[J].Journal of Mathematical Research and Exposition,2003,23(4):586-590. 被引量:21
  • 5Xu Baogen.On Signed Edge Domination Numbers of Graphs[J].Discrete Math,2001,239:179-189.
  • 6哈拉里F 李慰萱译.图论[M].上海:上海科学技术出版社,1980..
  • 7Hattingh J.H Ungerer E.The Signed and Minus K-subdomination Numbers of Comets[J].Discrete Math.,1998,183:141-152.

二级参考文献8

  • 1DUNBAR J, HEDETNIEMI S, HENNING M A. et al. Minus dominationin graphs [J]. Discrete Math, 1999, 199: 35-47.
  • 2BONDY J A, MURTY V S R. Graph Theory with Applications [M]. Elsevier, Amsterdam, 1976.
  • 3ZHANG Zhong-fu, XU Bao-gen, LI Yin-zhen. et al. A note on the lower bounds of signed domination number of a graph [J]. Discrete Math, 1999, 195: 295-298.
  • 4LEE J, SOHN M Y, KIM H K. A note on graphs with large girth and small minus domination number [J]. Discrete Applied Math, 1999, 91: 299-303.
  • 5CHARTRAND G, LESNIAK L. Graphs & Digraphs [M]. Second ed. Wadsworth & Brooks/Cole, Monterey, 1986.
  • 6XU Bao-gen, COCKAYNE E J, HAYNES T W. et al. Exteremal graphs for inequalities involving domination parameters [J] . Discrete Math, 2000, 216: 1-10.
  • 7XU Bao-gen, ZHOU Shang-chao. Characterization of connected graphs with maximum domination number [J]. J Math Res Exposition, 2000, 4: 523-528.
  • 8XU Bao-gen. On signed edge domination numbers of graphs [J]. Discrete Math, 2001, 239: 179-189.

共引文献28

同被引文献6

  • 1Bondy J A, Murty V S R. Graph Theory with Applications [ M]. Amsterdam : Elsevier,1976.
  • 2Haynes T W, Hedetniemi S T and Slater P J. Domination in Graphs [ M ]. New York : Marcel Dekker, 1998.
  • 3Zhang Z, Xu Baogen, Li Y and Liu L. A Note on the Lower Bounds of Signed Domination Number of a Graph [ J ]. Discrete Math, 1999,195:295 - 298.
  • 4Xu Baogen, Cockayne E J, Haynes T W, et al. Extremal Graphs for Inequalities Involving Domination Parameters [ J]. Discrete Math,2000,216 : 1 - 10.
  • 5Xu Baogen. On Signed Edge Domination Numbers of Graphs[ J ]. Discrete Math,2001,239 : 179 - 189.
  • 6Cockayne E J, Hedetniemi S T. Towards a Theory of Domination in Graphs [ J ]. Networks, 1977,7 : 247 - 261.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部