期刊文献+

基于动态树理论的刀具磨损监测技术 被引量:24

TOOL WEAR MONITORING BASED ON DYNAMIC TREE
下载PDF
导出
摘要 提出了基于动态树理论的刀具磨损监测方法,通过相关系数法提取传感器信号与刀具磨损最相关的几组特征,并采用具有局部记忆的B样条模糊神经网络建立刀具磨损量与声发射信号、切削力信号和振动信号特征之间的非线性映射关系,构造了任意加工条件下的刀具磨损监测系统,刀具磨损的识别结果由集成神经网络输出。试验结果表明,基于此方法构建的刀具磨损监测系统具有精度高、可靠度强、增殖性好和在线识别速度快等优点,值得工业推广。 A new methodology of tool wear classification based on dynamic tree is proposed. The correlation coefficients approach is utilized to extract several features with a close relation to tool wear. B-spline neural networks charactered by local memory is introduced to establish the nonlinearity relation between tool wear amounts and monitoring features extracted from acoustic emission, dynamometer and vibration sensors. Tool wear monitoring systems is so built under arbitrary machining conditions, and the integrated neural networks give the final classifying results of tool wear. The experimental results indicate that the tool wear monitoring system founded on the methodology is provided with high precision, high reliability, good multiplication and rapid recognizing speed, so it is good for popularization in industry.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第7期227-230,共4页 Journal of Mechanical Engineering
关键词 刀具磨损 动态树 B样条 模糊神经网络 集成神经网络 Tool wear Dynamic tree B-spline Fuzzy neural network Integrated neural network
  • 相关文献

参考文献6

  • 1KUO R J.Multi-sensor intergration for on-line tool wear estimation through artifical neural networks and fuzzy neural network[J].Engineering Applications of Artificial Intelligence,2000,13:249-261.
  • 2YAO Y X,LI X L,YUAN Z J.Tool wear detection with fuzzy classification and wavelet fuzzy neural network[J].Internatio-nal Journal of Machine Tools & Manufacture,1999,39:1 525-1 538.
  • 3SUSANTO V,CHEN J C.Fuzzy logic based in-process tool wear monitoring system in face milling operations[J].International Journal of Advanced Manufacturing Technology,2003,21(3):186-192.
  • 4SICK B.On-line and indirect tool wear monitoring in turning with artifical neural networks:a review of more than a decade of research[J].Mechanical Systems and Signal Processing,2002,16(4):487-546.
  • 5PRICKETT P W,JOHNS C.An overview of approaches to end milling tool monitoring[J].International Journal of Machine Tools & Manufacture.1999,39:105-122.
  • 6MARTIN B,CHRIS H.Neurofuzzy adaptive modelling and control[M].UK:Prentice Hall International Limited,1994.

同被引文献260

引证文献24

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部