期刊文献+

静态条件下闭孔泡沫铝气泡形成过程模拟研究 被引量:3

Simulation of A Static Bubble Formation Process of Closed Cell Aluminum Foam
下载PDF
导出
摘要 以静态条件下闭孔泡沫铝的空气发泡过程为研究对象,在聚乙烯醇水溶液中进行模拟研究.通过改变入射压缩空气的流量、压力,液体的粘度,出气孔的直径、数量、出气孔表面距液体表面的距离等实验条件,建立静态条件下液体表面气泡直径的预测模型,以便对铝熔体的泡沫特性和闭孔泡沫铝的胞直径进行科学有效的控制.在静态水模拟实验条件下获得了液体表面气泡直径预测模型.当入射空气的压强、气流量,液面高度,出气孔直径增大时,气泡直径随之增大;当出气孔数量,液体粘度增大时,气泡直径减小,表面张力对气泡直径的影响可以忽略不计;静态条件下液体表面气泡直径的预测值和实验测量值符合得较好,相对误差分布在-5.04%~6.32%之间. A simulation of static bubble formation process was conducted in a polyvinyl alcohol solution to predict foam size of a closed cell aluminum foam produced by air-foaming aluminum melt with varied the factors of affecting bubble diameter, viscosities, air flow, air pressure, orific and number diameter and depth of the polyvinyl alcohol solution. A numerical model was established to predict the bubble diameter in static foaming condition. The bubble diameter increases with air flow rate, air pressure, orifice diameter and the solution depth, and decreases with the orifices number and liquid viscosity. Moreover, the resulted prediction model of foam size of the closed cell aluminum foam was verified by compan'son to the experimental results from the foaming process at different foaming conditions, and the predicted bubble diameter is in good agreement with the experimental ones, the relative error distributes between -5.04 % and 6. 32 %.
出处 《大连铁道学院学报》 2006年第2期70-76,共7页 Journal of Dalian Railway Institute
基金 国家自然科学基金资助项目(50371013)
关键词 模拟 静态泡沫形态 气泡尺寸 影响因素 simulation static bubble formation foam size effect factors
  • 相关文献

参考文献16

  • 1赵增典,张勇,李杰.泡沫金属的研究及其应用进展[J].轻合金加工技术,1998,26(11):1-4. 被引量:33
  • 2SHIGERU AKLYAMA,HIDETOSHI UENO,KOJI IMAGAWA,et al.Foamed metal and method of producing same[P].US Patent,4713277.
  • 3王德庆,石子源.泡沫金属的生产、性能与应用[J].大连铁道学院学报,2001,22(2):79-86. 被引量:28
  • 4WANG DEQING,SHI ZIYUAN.Effect of Ceramic Particles on Cell Size and Wall Thickness of Aluminum Foam.Materials Science and Engineering[P].Materials Science and Engineering A,2003,361(1-2):45-49.
  • 5THOMAS M,KENNY D,SANG,H.[P].Patent,5622542,1997.
  • 6KENNY L D,THOMAS M.[P].US Patent,5281251,1994.
  • 7VAN WACHEM B G M,SCHOUTEN J C.Experimental Validation of 3-D Lagrangian VOF Model:Bubble shape and Rise Velocity[J],AIChE Journal,2002,48(12):2744-2753.
  • 8赵凤林,李仁超,赵沛,史志清.连铸中间包温度场的水模拟[J].化工冶金,1990,11(4):369-374. 被引量:2
  • 9DIANA MATONIS,DIMITRI GIDASPOW,MITRA BAHARY.CFD simulation of flow and turbulence in a slurry bubble column[J].Particle Technology and Fliudization,2002,48(7):1413-1429.
  • 10张也影.流体力学(第二版)[M].北京:高等教育出版社,1998.81.

二级参考文献39

  • 1蒙多尔福LF.铝合金的组织与性能[M].北京:冶金工业出版社,1988..
  • 2恽魁宏.有机化学[M].北京:高等教育出版社,1997..
  • 3[1]SOSNIC A. US Patent 2434775, 1948.
  • 4[2]ELLIOTT J. C. US Patent 2751289, 1956.
  • 5[3]NIEBYLSKI L. M., CYHAREMA C. P., LEE T. E. USPatent 3743353, 1974.
  • 6[4]FIEDLER S. O., BIORKSTEN J., FIELDER W. S. USPatent 2979392, 1961.
  • 7[5]HARDY P. W., PEISKER G. W. US Patent 3300296, 1967.
  • 8[6]BERRY C. B. Jr. Foanmed Metal[P]. US Patent 3671221, 1972.
  • 9[7]HALL C. G. Procees for Producing Formed Metal[P]. US Patent 3692513, 1972.
  • 10[8]NIEBLYSKI L. M., CHAREMA C. P. Method of Making Metal Foams by Sequential Expansion[P]. USPatet 3790365, 1974.

共引文献75

同被引文献35

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部