摘要
定义了衰减指数模型的四阶混合累积量,给出了单样本有限长数据条件下的样本估计,提出了高斯色噪声条件下估计模型参数的两种有效方法。仿真实验结果表明:四阶混合累积量能明显提高KTProny、MP和ESPR IT方法在高斯色噪声条件下的估计性能,且后两种方法的估计性能优于第一种方法。
The FOMC (fourth order mixed cumulants) of damped exponential model is presented when only a single data record with finite length is available in this paper. Two efficient approaches for the estimation of the parameters of exponentially damped sinusoids are introduced. Monte Carlo simulations demonstrate that the fourth order mixed cumulants can significantly improve the performance of KTProny、MatrixPencil and ESPRIT methods in the presence of additive colored Gaussian noise and the last two methods have better accuracy.
出处
《现代雷达》
CSCD
北大核心
2006年第7期67-70,共4页
Modern Radar
基金
国家安全重大基础研究项目
关键词
四阶混合累积量
衰减指数模型
参数估计
高斯色噪声
fourth order mixed cumulants
damped exponential model
parameter estimation
Gaussian colored noise