期刊文献+

First-Principles Study of Orthorhombic Perovskites MgSiO3 up to 120 GPa and Its Geophysical Implications 被引量:4

First-Principles Study of Orthorhombic Perovskites MgSiO3 up to 120 GPa and Its Geophysical Implications
下载PDF
导出
摘要 High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice constants and mass density of the MgSiO3 crystal as functions of pressure are computed, and the corresponding bulk modulus and bulk velocity are evaluated. Our theoretical results agree well with the high-pressure experimental data. A thermodynamic method is introduced to correct the temperature effect on the O-K first-principles results of bulk wave velocity, bulk modulus and mass density in lower mantle PIT range. Taking into account the temperature corrections, the corrected mass density, bulk modulus and bulk wave velocity of MgSiO3-perovskite are estimated from the first-principles results to be 2%, 4%, and 1% lower than the preliminary reference Earth model (PREM) profile, respectively, supporting the possibility of a pure perovskite lower mantle model. High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice constants and mass density of the MgSiO3 crystal as functions of pressure are computed, and the corresponding bulk modulus and bulk velocity are evaluated. Our theoretical results agree well with the high-pressure experimental data. A thermodynamic method is introduced to correct the temperature effect on the O-K first-principles results of bulk wave velocity, bulk modulus and mass density in lower mantle PIT range. Taking into account the temperature corrections, the corrected mass density, bulk modulus and bulk wave velocity of MgSiO3-perovskite are estimated from the first-principles results to be 2%, 4%, and 1% lower than the preliminary reference Earth model (PREM) profile, respectively, supporting the possibility of a pure perovskite lower mantle model.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第8期2334-2337,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 40474033 and 10376024, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20050613017.
关键词 EARTHS LOWER MANTLE THERMOELASTIC PROPERTIES SILICATE PEROVSKITE THERMALEXPANSIVITY MOLECULAR-DYNAMICS AB-INITIO EQUATION STATE PSEUDOPOTENTIALS COMPUTATION EARTHS LOWER MANTLE THERMOELASTIC PROPERTIES SILICATE PEROVSKITE THERMALEXPANSIVITY MOLECULAR-DYNAMICS AB-INITIO EQUATION STATE PSEUDOPOTENTIALS COMPUTATION
  • 相关文献

参考文献26

  • 1Mao H K, Hemley R J, Fei Y W, Shu J F, Chen L C, Jephcoat A P and Wu Y 1991 J. Geophys. Res. 96 8069a
  • 2Wang Y B, Weidner D J, Liebermann R C and Zhao Y 1994 Phys. Earth Planet. Inter. 83 13
  • 3Fiquet G, Dewaele A, Andrault D, Kunz M and Bihan T L 2000 Geophys. Res. Lett. 27 21
  • 4Li B S and Zhang J Z 2005 Phys. Earth Planet. Inter. 151 143
  • 5McQueen R C, Marsh S P and Fritz J N 1967 J. Geophys.Res. 72 4999
  • 6Watt J R and Ahrens T J 1986 J. Geophys. Res. 91 7495
  • 7Gong Z Z, Fei Y W, Dai F, Zhang L and Jing F Q 2004 Geophys. Res. Lett. 31 L04614
  • 8Wentzcovitch R M, Karki B B, Cococcioni M and Gironcoli S de 2004 Phys. Rev. Lett. 92 018501
  • 9Oganov A R, Brodholt J P and Price G D 2001 Earth Planet. Sci. Lett. 184 555
  • 10Dziewonski A M and Anderson D L 1981 Phys. Earth Planet. Inter. 25 297

同被引文献15

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部