期刊文献+

广义高斯信源的自适应编码研究

Adaptive Coding for Generalized Gaussian Sources in Image Coding
下载PDF
导出
摘要 首先介绍了当前最新的几种视频编码标准并且进行了比较,熵编码是每一个视频编码标准必须认真研究的课题,为了减少由于失配所带来的效率损失,本文提出了一种自适应编码技术:自适应指数哥伦布码,并与自适应算术编码进行了比较。分析和仿真都表明即使信源特性在大范围内发生变化,自适应指数哥伦布码对于保持高的编码效率是足够稳健的(90%以上的情况),同时保持了指数哥伦布码和哥伦布-莱期码的简洁性。 Several latest video coding standards are introduced and compared, Since entropy coding is one of the most important topics that need serious study in the fields of video coding standards, the main work of this paper focuses on adaptive entropy coding. In this paper, an adaptive coding technique is proposed, namely, adaptive Exp-Golomb codes (AEG), in order to mitigate the efficiency loss due to mismatch. Analysis and simulations show that the adaptive techniques are robust enough to keep high coding efficiency (constantly about 90%) even if the sources undergo big changes.
出处 《电视技术》 北大核心 2006年第7期7-10,共4页 Video Engineering
基金 国家自然科学基金资助项目(60572081)
关键词 指数哥伦布码 哥伦布-莱斯码 广义高斯信源 自适应编码 Exp-Golomb (EG) codes Golomb-Rice (GR) codes Generalized Gaussian (GG) sources adaptive coding
  • 相关文献

参考文献13

  • 1WIEGAND T,SULLIVAN G J,BJONTEGAARD G,et al.Overview of the H.264/AVC video coding standard[J].IEEE Trans.on Circuitsand Systems for Video Technology,2003,13(7):560-576.
  • 2SRINIVASAN S,HSU P,HOLCOMB T.Windows media video 9:overview and applications[R].Signal Processing:Image Communication,2004.
  • 3YU Lu,YI Feng,DONG Jie,et al.Overview of AVS-video:tools,performance and complexity[R].Geneva:SPIE,2005.
  • 4WEN J,VILLASENOR J D.Structured prefix codes for quantized low-shape-parameter generalized gaussian sources[J].IEEE Trans.Inf.Theory,1999,5(45):1307-1314.
  • 5GALLAGER R G,VAN VOORHIS D C.Optimal source codes for geometrically distributed integer alphabets[J].IEEE Trans.Inf.Theory,1975,3(21):228-230.
  • 6ELIAS P.Universal codeword sets and representations of the integers[J].IEEE Trans.Inf.Theory,1975,3(21):194-203.
  • 7LAROIA R,FARVARDIN N.A structured fixed-rate quantizer de rived from a variable length scalar quantizer-Part Ⅰ:memorylesssources[J].IEEE Trans.Inf.Theory,1993,5(39):851-867.
  • 8WEINBERGER M J,SEROUSSI G,SAPIRO G.A low complexity,context-based lossless image compression algorithm[C]//Proceedings of1996 IEEE Data Compression Conf.,Snowbird:[s.n.].1996:140-149.
  • 9LOPRESTO S M,RAMCHANDRAN K,ORCHARD M T.Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework[C]//Proceedings of 1997 IEEE Data Compression Conf.,Snowbird:[s.n.].1997:221-230.
  • 10CALVAGNO G,GHIRARDI C,MIAN G A,et al.Modeling of subband image data for buffer control[J].IEEE Trans.Circuits Syst.Video Technol.,1997,4(7):402-408.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部