期刊文献+

基于密度和对象方向聚类算法的改进 被引量:14

Improved Clustering Algorithm Based on Density and Direction
下载PDF
导出
摘要 针对K-means算法所存在的问题进行了深入的研究,提出了基于密度和聚类对象方向的改进算法(KADD算法)。该算法采取聚类对象分布密度方法来确定初始聚类中心,然后根据对象的聚类方向来发现任意形状的簇。理论分析与实验结果表明,改进算法在不改变时间、空间复杂度的情况下能取得更好的聚类结果。 The existing problems of K-means clustering algorithm are carefully researched.An improved K-means algorithm based on density and direction (KADD) is presented,with which initial clustering center points are located according to the clustering objects distribution density.And the clusters with arbitrary distributions are bind based on object direction.Theory analysis and experimental results demonstrate that the improved algorithm can get better clustering results without changing efficiency and dimensional complexity.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第20期154-156,共3页 Computer Engineering and Applications
基金 内蒙古自治区高等教育科学研究项目(编号:NJ04019)
关键词 数据挖掘 聚类 K—means算法 KADD算法 data mining,clustering, K-means algorithm, KADD algorithm
  • 相关文献

参考文献8

二级参考文献45

  • 1[加]韩家炜 坎伯著 范明等译.数据挖掘[M].,2001-08..
  • 2[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 3[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 4[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 5[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 6[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 7[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
  • 8[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
  • 9[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
  • 10[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.

共引文献230

同被引文献71

引证文献14

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部