期刊文献+

结合颜色和形态特征的杂草实时识别方法 被引量:13

Real-time weed recognition method based on color and morphological features
下载PDF
导出
摘要 利用计算机视觉技术将杂草从农作物和土壤中区别开来已成为精细农业领域研究的热点问题。提出了一种颜色和形态特征相结合的杂草实时识别方法。在YcbCr颜色模型中,以色差Cr为特征量、以最大类间方差作为GA的适应度函数对Cr进行自适应阈值分割将植物与背景分离;利用植物的形态特征,结合形态学腐蚀、膨胀方法及差影法将农作物和杂草分离。多幅杂草图像研究结果表明:该算法杂草正确识别率大于83.1%,处理一幅640像素×480像素的图像平均只需38ms,识别速度满足25帧/秒的实时性要求。 The technology of weed recognition based on machine vision becomes the research focus of precision agriculture. In order to realize the variable sparing technology, it is required to identify weed firstly. This paper presents a weed identification method that combines color and morphological features. Color feature is utilized to distinguish plants and background: using a method that takes YCbCr as color-space and Cr as characteristic variant and maximum variance as criterion. Morphological feature is utilized to distinguish crops and weed: using a method that combines morphological filter and differential shadow algorithm. Experiments on a serial of weed images are conducted. The experimental results show that the correct identification ratio exceeds 83.1%, the processing speed of a 640 pixels × 480pixels image is about 38ms and the identification soeed exceeds 25fps.
出处 《光电工程》 EI CAS CSCD 北大核心 2006年第7期96-100,共5页 Opto-Electronic Engineering
关键词 杂草识别 机器视觉 目标识别 形态学 Weed recognition Machine vision Target recognition Morphological
  • 相关文献

参考文献7

  • 1毛文华,王一鸣,张小超,王月青.基于机器视觉的田间杂草识别技术研究进展[J].农业工程学报,2004,20(5):43-46. 被引量:28
  • 2Meyer G E, Mehta T, Kocher M E Textural imaging and discriminant analysis for distinguishing weeds for spot spraying [J].Transactions of the ASAE, 1998, 41(4): 1189-1197.
  • 3Borregaard T, Nielsen H, Norgaard L. Crop-weed discrimination by line imaging spectroscopy [J]. Journal of Agricultural Engineering Research, 2000, 75(4): 389-400.
  • 4姚鸿勋,刘明宝,高文,范旭彤,张洪明,吕雅娟.基于彩色图像的色系坐标变换的面部定位与跟踪法[J].计算机学报,2000,23(2):158-165. 被引量:54
  • 5汪国有,邹玉兰,凌勇.基于显著性的OTSU局部递归分割算法[J].华中科技大学学报(自然科学版),2002,30(9):57-59. 被引量:24
  • 6Guojin Li, Guorong Wang, Jiguang Zhong. A genetic algorithm on welding seam image segmentation[A]. Fifth World Congress on Intelligent Control and Automation(WCICA 2004)[C]. Guang Zhou: IEEE, 2004, 3: 2176-2178.
  • 7Rafael C.Gonzalez, Richard E.Woods. Digital Image Processing(Second Edition)[M]. Beijing: Publishing House of Electronics Industry, 2001. 519-566.

二级参考文献29

  • 1Paice M E R,Miller P C H,Bodle J D.An experimental sprayer for the spatially selective application of herbicides [J]. Journal of Agricultural Engineering Research, 1995,60:107-116.
  • 2Guyer D E, Miles G E, Schreiber M M, et al. Machine vision and image processing for plant identification[J].Transactions of the ASAE, 1986,29(6): 1500-1507.
  • 3Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identification [J]. Transactions of the ASAE, 1993, 36(1):163-171.
  • 4Woebbecke D M, Meyer G E, Von Bargen K, et al.Shape features for identifying young weeds using image analysis[J]. Transactions of the ASAE, 199538(1):271-281.
  • 5YonekawaS, Sakai N, Kitani O. Identification of idealized leaf types using simple dimensionless shape factors by image anlysis[J]. Transactions of the ASAE,1996,39 (4): 1525- 1533.
  • 6FranzE, Gebhardt M R, Unklesbay K B. Shape description of completely visible and partially occluded leaves for identifying plants in digital images [J].Transactions of the ASAE, 1991,34(2): 673- 681.
  • 7Shearer S A, Holmes R G. Plant identification using color co-occurrence matrices [J]. Transactions of the ASAE,1990,33 (6): 2037 - 2044.
  • 8Meyer G E, Mehta T, Kocher M F, et al. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying[J]. Transactions of the ASAE, 1998,41(4):1189-1197.
  • 9Burks T F, Shearer S A, Gates R S. Backpropagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of the ASAE, 2000,43(4):1029-1037.
  • 10Tang L, Tian F, Steward B L, et al. Texture based weed classification using gabor wavelets and neural network for real-time selective herbicide application[A].ASAE paper, 1997. Time selective herbicide application [J]. ASAE paper. St Joseph Mich, 1997.

共引文献103

同被引文献118

引证文献13

二级引证文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部