期刊文献+

M周期分数傅里叶变换的光栅信号去噪方法 被引量:1

Grating signal denoising method with M-cycle Fractional Fourier Transform
下载PDF
导出
摘要 用矩阵方法离散地实现了任意M周期的分数傅里叶变换(FRFT),它可实现变换级次及周期的自由选择。根据相应的噪声频谱,选取适当的级次及周期,可使FRFT构造一个极窄的带阻滤波器,将其中心频率对准相应噪声的窄谱,便可滤除与理想信号频谱重叠部分的噪声分量,同时保持信号分量。在实验中,用矩阵方法实现的FRFT对所测光栅信号进行了去噪处理,并与传统的傅里叶与小波分析去噪方法进行了对比,结果表明,只要选取适当的级次和周期(α=0.545,Μ=5)就可获得理想的去噪效果。 The matrix method is introduced to realize the Fractional Fourier Transforms (FRFT) of arbitrary M-cycle discretely, whose transform power (a) and cycle (34) are selected freely. With the method, the value of α and M can be decided with corresponding spectrum of noise. A sharply narrow Band-stop Filter can be constructed by FRFT with reasonable values of a and M. By its central frequency being equal to that of the narrow spectrum of noise, the noise portion overlapped with the ideal signal spectrum is eliminated, while the required signal is well kept. In the experiment, we used FRFT realized with the matrix method to denoise the grating signal and compare it with traditional Fourier and Wavelet denoising methods. As a result, we find that the perfect effect will be acquired as long as reasonable values of power and cycle (α=0.545, M=5) are chosen.
出处 《光电工程》 EI CAS CSCD 北大核心 2006年第7期110-114,共5页 Opto-Electronic Engineering
关键词 分数傅里叶变换 变换矩阵 频谱 带阻滤波器 Fractional Fourier transform Transform matrix Spectrum Band-stop filter
  • 相关文献

参考文献12

  • 1S. Granieri, O. Trabocchi, E.E. Sicre. Fractional Fourier Transform Applied to Spatial Filtering in the Fresnel Domain[J].OPTICS COMMUNICATIONS, 1995, 119(9): 275-278.
  • 2Baida Lu, Fanlong Kong, Bin Zhang. Optical systems expressed in terms of fractional Fourier transforms[J]. OPTICS COMMUNICATIONS, 1997, 137(4): 13-16.
  • 3Daomu Zhao, Weichun Zhang, Fan Ge, et al. Fractional Fourier transform and the diffraction of any misaligned optical system in spatial-frequency domain[J]. Optics & Laser Technology, 2001, 33: 443-447.
  • 4M. Alper Kutay, Hakan Ozaktas, Haldun M. Ozaktas, et al. The fractional Fourier domain decomposition[J]. SIGNAL PROCESSING, 1999, 77: 105-109.
  • 5Daomu Zhao, Haidan Mao, Hongjie Liu, et al. Effect of spherically aberrated lens on the fractional Fourier transformation systems[J]. OPTICS COMMUNICATIONS, 2003, 227: 213-220.
  • 6Jianwen Hua, Liren Liu, Guoqiang Li. Performing fractional Fourier transform by one Fresnel diffraction and one lens[J].OPTICS COMMUNICATIONS, 1997, 137(4): 11-12.
  • 7高玉凯,邓正隆.小波变换与卡尔曼滤波结合的RLG降噪方法[J].光电工程,2005,32(5):31-34. 被引量:9
  • 8王远干,喻洪麟,黄良明.基于M周期离散分数傅里叶变换的数字水印算法[J].计算机应用研究,2005,22(2):229-230. 被引量:11
  • 9T. Alieva., Andre Barbe. Fractional Fourier and Radon-Wigner transforms of periodic signals[J]. SIGNAL PROCESSING, 1998, 69: 183-189.
  • 10陈亚勇.MATLAB信号处理详解[M].北京:人民邮电出版社,2002.103-169.

二级参考文献23

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 2L.K.SHARK,C.YU.Denoising by optimal fuzzy threshold in wavelet domain[J].Electronics Letters,2000,36(6):581-582.
  • 3LrU Bin,wANG Yuan‘Yuan,WANG Wei—qi.Spectrogram enhancement algorithm:a soft thresh。lding—based approach[J].Ultrasound in Medical and Biology,1999,25(5):839—846.
  • 4M.KIRBY,L.SIROVICH.Application of Karhunent—Loeve procedure for the characterization of human faces[J].IEEE Trans.on PAMI,1990,12(1):103-108.
  • 5B.CHTTPRASERT,K.R.RAO.Discrete cosine transform filtering[J]Signal Processing,1990,19(3):235—245.
  • 6Hartung F, Kutter M. Multimedia Watermarking Techniques [ J ].Proc IEEE, 1999, 87(7) :1079-1107.
  • 7Eskicioglu A M. A Key Transport Protocol for Conditional Access Systems[C]. San Jose, California, USA:Proceedings of the SPIE Conference on Security and Watermarking of Multimedia Contents Ⅲ,2001. 139-148.
  • 8Piva A, Barni M, et al. Application-driven Requirements for Digital Watermarking Technology[ C ]. Proc of EMMSEC'98,1998.28-30.
  • 9Swanson M D,et al. Multimedia Data-embedding and Watermarking Technologies[ J]. Proc IEEE, 1998,86(6) : 1064-1087.
  • 10Miyazaki A, Okamoto A. Analysis of Watermarking System in the Frequency Domain and its Application to Design of Robust Water-marking Systems[ C ]. IEEE International Conference on Acoustics,Speech and Signal Processing,2001. 1969-1972.

共引文献32

同被引文献13

  • 1袁修贵,王军,黄修建,张泊.基于小波变换的一种图像增强去噪算法[J].中南大学学报(自然科学版),2005,36(2):298-301. 被引量:15
  • 2董世都,杨小帆,黄同愿.一种基于三维小波系数上下文模型的视频压缩方法[J].小型微型计算机系统,2005,26(11):2021-2024. 被引量:1
  • 3Shi F,Selesnick I W. An elliptically contoured exponential mixture model for wavelet based image denoising[J].Applied and Computational Harmonic Analysis,2007,(01):131-151.
  • 4Mahbubur S M,Rahman M.Omair A. Improved restoration using wavelet-based denoising and fourier-based deconvolution[J].ImageProcessing,2008,(02):249-251.
  • 5Grace S,Martin V. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].Image Processing,2000,(09):1522-1531.
  • 6Wang H X,Robert S H. Microarry image enhancement by denoising using stationary wavelet transform[J].Transactions on Nanobioscience,2003,(04):184-188.
  • 7Donoho D L,Johnston I M. Ideal spatial adaptation by wavelet shrinkage[J].IEEE Transactions on Image Processing,1994,(03):425-455.
  • 8Chang S,Yu B,Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Transactions on Image Processing,2000,(09):1522-1531.doi:10.1109/83.862630.
  • 9GUANG Taozhai,WU Xiaolin,YAO Xiaokang. MDL context modeling of images with application to denoising[J].IEEE Transactions on Image Processing,2009,(07):3845-3848.
  • 10Chang S G,Yu B,Martin V. Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,(09):1532-1546.doi:10.1109/83.862633.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部