期刊文献+

奇异摄动边值问题中的重正化群方法 被引量:2

Renormalization Group Method for a Class of Singular Perturbation Boundary Value Problems
下载PDF
导出
摘要 研究二阶奇异摄动边值问题:εd2ydx2+f(x)dydx+g(x,y)=0,y(0)=α,y(1)=β,其中ε是小参数.利用重正化群方法,构造了该边值问题解的一致有效渐近展开式. The following singular perturbation boundary value problems are discussed:{εd^2y/dx^2+f(x)dy/dx+g(x,y)=0 y(0)=α,y(1)=β where ε 〉 0 is a small parameter. By using the so called renormalization group method, we give a uniformly valid asymptotic expansions of the boundary value problems under consideration.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第4期555-559,共5页 Journal of Jilin University:Science Edition
基金 教育部博士点基金(批准号:2005)
关键词 重正化群方法 奇异摄动边值问题 一致有效渐近展式 renormalization group method singular perturbation boundary value problems uniformly valid asymptotic expansions
  • 相关文献

参考文献5

  • 1Nayfeh A H.Perturbation Method[M].NewYork:Wiley-interscience,1973.
  • 2Chen L Y,Goldenfeld N,Oono Y.Renormalization Group Theory for Global AsymptoticAnalysis[J].Phys Rev Lett,1994,73:1311-1315.
  • 3Chen L Y,Goldenfeld N,Oono Y.Renormalization Group and Singular Perturbations:MultipleScales,Boundary Layers,and Perturbation Theory[J].Phys Rev E,1996,54:376-394.
  • 4吴克义,付苗苗,吕显瑞.重正化群方法在一类奇异摄动边值问题中的应用[J].吉林大学学报(理学版),2005,43(5):599-602. 被引量:5
  • 5Chang K W,Howes F A.Nonlinear Singular Perturbation Phenomena:Theory andApplications[M].Applied Mathematical Sciences,Vol.56.New York:Springer-Verlag,1984.

二级参考文献4

  • 1Nayfeh A H. Perturbation Method [M]. New York: Wiley-Interscience, 1973.
  • 2Chen L Y, Goldenfeld N, Oono Y. Renormalization Group Theory for Global Asymptotic Analysis [J]. Phys Rev Lett, 1994, 73: 1311-1315.
  • 3Chen L Y, Goldenfeld N, Oono Y. Renormalization Group and Singular Perturbations: Multiple Scales, Boundary Layers, and Perturbation Theory [J]. Phys Rev E, 1996, 54: 376-394.
  • 4Chang K W, Howes F A. Nonlinear Singular Perturbation Phenomena: Theory and Applications, Applied Mathematical Sciences [M]. New York: Springer-Verlag, 1984.

共引文献4

同被引文献16

  • 1吴克义,付苗苗,吕显瑞.重正化群方法在一类奇异摄动边值问题中的应用[J].吉林大学学报(理学版),2005,43(5):599-602. 被引量:5
  • 2Bretherton F P. Slow Viscous Motion Round a Cylinder in a Simple Shear [J]. J Fluid Mech, 1962, 12(4) : 591-613.
  • 3Nayfeh A H. Perturbation Methods [M]. New York: Wiley-Interscience, 1973.
  • 4Wilson K G. The Renormalization Group: Critical Phenomena and the Kondo Problem [J]. Rev Modem Phys, 1975, 47(4) : 773-840.
  • 5CHEN Lin-yuan, Goldenfeld N, Oono Y. Renonnalization Group Theory for Global Asymptotic Analysis [ J]. Phys Rcs Lett, 1994, 73(10) : 1311-1315.
  • 6CHEN Lin-yuan, Goldenfeld N, Oono Y. Renormalization Group and Singular Perturbations: Multiple Scales, Boundary Layers and Perturbation Theory [J]. Phys Rev E, 1996, 54( 1 ) : 376-394.
  • 7Kunihiro T. A Geometrical Formulation of the Renormalization Group Method for Global Analysis [ J ]. Progre Theoret Phys, 1995, 94(4) : 503-514.
  • 8Kunihiro T. The Renormalization Group Method Applied to Asymptotic Analysis of Vector Fields [ J ]. Progre Theoret Phys, 1997, 97(2): 179-200.
  • 9Ziane M. On a Certain Renormalization Group Method [J]. J Mah Phys, 2000, 41 (5) : 3290-3299.
  • 10Lee DeVille R E, Harkin A, Holzer M, et al. Analysis of a Renormalization Group Method and Normal Lonn Theory for Perturbed Ordinary Differential Equations [J]. Phys D, 2008, 237(8) : 1029-1052.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部