期刊文献+

一种快速最大频繁序列模式挖掘算法

A Mining Algorithm for Fast Maximal Sequential Patterns
下载PDF
导出
摘要 针对序列模式挖掘中,频繁子序列个数随模式长度增加而爆炸性增长的问题,提出一种从序列数据库中挖掘最大频繁序列模式的新算法(MFSPAN).MFSPAN充分利用不同序列可能具有相同前缀的性质来减少项集比较次数.在标准测试数据集上的实验结果表明了MFSPAN的有效性. This paper proposes a novel algorithm MFSPAN (maximal frequent sequential pattern mining algorithm). MFSPAN is used to mine the complete set of maximal frequent sequential patterns in sequence databases. It solves the problem that the number of frequent subsequences will increase explosively as frequent patterns become longer: because MFSPAN takes full advantage of the property that different sequences may share a common prefix to reduce itemset comparing times. Experiments on standard test data show that MFSPAN is very effective.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第4期570-574,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60433020) 教育部"符号计算和知识工程重点实验室"资助项目基金
关键词 序列模式 最大序列模式 长模式 深度优先 sequential pattern maximal sequential pattern long pattern depth-first
  • 相关文献

参考文献10

  • 1Agrawal R,Srikant R.Mining Sequential Patterns[C]//Eleventh International Conference on Data Engineering (ICDE 1995).Taipei:IEEE Computer Society Press,1995:3-14.
  • 2陆楠,王喆,周春光.基于FP-tree频集模式的FP-Growth算法对关联规则挖掘的影响[J].吉林大学学报(理学版),2003,41(2):180-185. 被引量:25
  • 3欧阳继红,王仲佳,刘大有.具有动态加权特性的关联规则算法[J].吉林大学学报(理学版),2005,43(3):314-319. 被引量:16
  • 4Yan X,Han J,Afshar R.CloSpan:Mining Closed Sequential Patterns in Large Databases[C]//Proceedings of the Third SIAM International Conference on Data Mining (SDM2003).San Francisco:ACM/SIAM Press,2003:166-177.
  • 5Burdick D,Calimlim M,Gehrke J.Mafia:a Maximal Frequent Itemset Algorithm for Transactional Databases[C]//Proceedings of the 17th International Conference on Data Engineering (ICDE 2001).Heidelberg,Germany:IEEE Press,2001:443-452.
  • 6管恩政,周春光,王喆,徐秀娟.频繁序列模式挖掘算法[J].吉林大学学报(信息科学版),2005,23(3):267-272. 被引量:4
  • 7Jr Bayardo R J.Efficiently Mining Long Patterns from Databases[C]//Proceedings of the ACM SIGMOD.New York:ACM Press,1998:85-93.
  • 8Agarwal R,Aggarwal C,Prasad V V.A Tree Projection Algorithm for Generation of Frequent Itemsets[J].Journal of Parallel and Distributed Computing,2000,61(3):350-371.
  • 9Ayres J,Flannick J,Gehrke J,et al.Sequential Pattern Mining Using a Bitmap Representation[C]//SIGKDD 2002.New York:ACM Press,2002:429-435.
  • 10管恩政,常晓宇,王喆,周春光.快速频繁序列模式挖掘算法[J].吉林大学学报(理学版),2005,43(6):768-772. 被引量:7

二级参考文献23

  • 1周春光,邢辉,徐振龙,王哲.商业数据的预测模型及其算法研究[J].吉林大学学报(信息科学版),2002,20(3):53-60. 被引量:15
  • 2AGRAWAL R, SRIKANT R. Mining Sequential Patterns [A]. In ICDE'95 [C]. Taipei: [s. n. ], 1995: 3-14.
  • 3AGRAWAL R, SRIKANT R. Fast Algorithms for Mining AssociationRules [A]. In VLDB'94 [C]. Santiago, Chile: [s.n. ] , 1994: 487-499.
  • 4BURDICK D, CALIMLIM M, GEHRKE J. Mafia: A Maximal Frequent Itemset Algorithm for Transactional Databases [A].In ICDE2001 [C]. Heidelberg, Germany: [s. n.] , 2001.
  • 5PEI J, HAN J, MORTAZAVI-ASL B, et al. PrefixSpan Mining Sequential Patterns Efficiently by Prefix Projected Pattern Growth [A]. In ICDE2001 [C]. Heidelberg, Germany: [s. n.],2001.
  • 6YAN XIFENG, HAN JIAWEI, AFSHAR RAMIN. CloSpan: Mining Closed Sequential Patterns in Large Databases [A]. In SDM 2003 [C]. San Francisco, California, USA: [s. n. ], 2003.
  • 7AYRES J, FLANNICK J, GEHRKE J, et al. Sequential Pattern Mining Using a Bitmap Representation [A]. In SIGKDD2002[C]. Edmonton, Alberta, Canada: [ s. n. ], 2002: 429-435.
  • 8HAN J, PEI J, YIN Y. Mining Frequent Patterns without Candidate Generation [J]. In SIGMOD00 [C]. Dallas, TX: [s.n. ], 2000: 1-12.
  • 9HAN J, PEI J, MORTAZAVI-ASL B, et al. Freespan: Frequent Pattern-Projected Sequential Pattern Mining [A]. In KDD'00 [C]. Boston. MA: [ s. n. ], 2000. 355-359.
  • 10SRIKANT R, AGRAWAL R. Mining Sequential Patterns: Generalizations and Performance Improvements [A]. In EDBT96[C]. Avignon, France: [s. n. ], 1996: 3-17.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部