期刊文献+

拓扑优化在单缸机缸体轻量化设计中的应用 被引量:12

Application of topology optimization to light-weight design of single cylinder engine
下载PDF
导出
摘要 为将三维拓扑优化技术应用于发动机气缸体轻量化设计中,对采用变密度拓扑优化方法的拓扑优化技术进行了研究.以缸体上施加最大爆发压力工况为边界条件,以缸体总柔度最小化为优化目标,以缸体重量为约束条件,对缸体进行拓扑优化.拓扑优化后的结构考虑加工、装配等因素,进行合理的重新建模后,分析了最大爆发压力工况和最大侧向力工况的气缸体应力分布,两种工况下优化后的缸体最大应力比原气缸体降低,应力分布更加均匀.结构优化方法用于缸体的等强度轻量化设计中,很容易确定缸体的最佳形状,并能减少重复设计验证的次数. In order to apply the 3D topology optimization to the light-weight design of engine block, the topology optimization based on the variable density was studied. When performing topology optimization,the boundary condition was taken when the engine was at the moment of gas explosion, the minimum compliances of the cylinder block were taken as the single objective, and the mass as the constraint. Considering the factors of machining and assembling, CAD model of the cylinder block was rebuilt. The stress distribution of the optimized cylinder block was analyzed at the load of gas explosion and maximum piston knocking. At both load cases the maximum stress of the optimized cylinder block was lower than the original one, and the stress distribution was more even. Therefore, the structure optimization used in the light-weight design can determine the shape of the cylinder block easily and decrease the repetitions of design and validation.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2006年第4期306-309,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50175078)
关键词 发动机 气缸体 拓扑优化 变密度 等强度 轻量化 engine cylinder block topology optimization variable density equal-intensity light-weight
  • 相关文献

参考文献7

二级参考文献28

  • 1李俊宝,李衍.ZH1105WG型单缸柴油机缸体动态特性分析[J].动态分析与测试技术,1995,13(1):40-46. 被引量:1
  • 2王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000..
  • 3余俊,周济.优化方法程序库OPB-2原理及应用.武汉:华中科技大学出版社,1997
  • 4王石刚.组合结构优化理论、方法及工程应用研究:[博士学位论文].武汉:华中科技大学,1993
  • 5Bendsoe M P , Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71:197~224
  • 6Hassani B, Hinton E. Homogenization and Structural Topology Optimization. London:Springer-Verlag Limited, 1999
  • 7Suzhki K, Kikuchi N. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 93:291~381
  • 8Diaz A R, Bendsoe M P. Shape optimization of structures for multiple loading conditions using a homogenization method. Structural Optimization, 1992, 4:17~22
  • 9Jog C S, Haber R B. Stability of finite element models for distributed parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering, 1996, 130:203~226
  • 10Sigmund O, Petersson J. Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards, mesh dependencies and local minima. Structural Optimization, 1998, 16:68~75

共引文献100

同被引文献55

引证文献12

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部