期刊文献+

高斯最大似然分类在高光谱分类中的应用研究 被引量:2

Applied research of Gaussian maximum likelihood classification in hyperspectral classification
下载PDF
导出
摘要 分析了高斯似然分类错误率和Bhattacharyya距离的关系,同时推导出在独立特征条件下Bhattacharyya距离具有相加的性质,并在这些基础上提出了一种新的特征选择算法。该算法以各特征的相对Bhattacharyya和作为准则函数选择能有效降低分类错误率的一组特征,最后利用这组特征进行高斯似然分类。实验采用AVIR IS数据,结果证明了该算法的有效性。 The relationship between Gaussian maximum likelihood classification error and Bhattacharyya distance was analyzed, and the addition property of Bhattacharyya distance was enumerated under uncorrelated features condition. Based on such analyses, a new feature selection algorithm was derived. This algorithm adopted the relative Bhattacharyya distance summation of each feature as the criterion function to select the features which contributed more to the reduction of classification error. These features then could be used for Gaussian maximum likelihood classification. Adopting AVIRIS data, the experimental results verify the effectiveness of this algorithm.
作者 陈进 王润生
出处 《计算机应用》 CSCD 北大核心 2006年第8期1876-1878,共3页 journal of Computer Applications
关键词 高光谱分类 高斯最大似然分类 分类错误率 BHATTACHARYYA距离 特征选择 hyperspectral classification Ganssian maximum likelihood classification classification error BhattachmTya distance feature selection
  • 相关文献

参考文献9

  • 1HAN T,GOODENOUGH DG,DYK A,et al.Hyperspectral feature selection for forest classification[A].Proceedings of IEEE Geoscience and Remote Sensing Symposium[C].2004.1471 -1474.
  • 2SWAIN PH,DAVIS SM.Remote Sensing:The Quantitative Approach[M].New York:McGraw-Hill,1978.
  • 3LEE C,LANDGREBE DA.Fast likelihood classification[J].IEEE Transactions on Geoscience and Remote Sensing,1991,29(4):509-517.
  • 4JIA X,RICHARDS JA.Efficient maximum likelihood classification for imaging spectrometer data sets[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(3):274-281.
  • 5JIA X,RICHARDS JA.Segmented principal components transformation for efficient hyperspectral temote-sensing image display and classification[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):538 -542.
  • 6TU TM,CHEN CH,WU JL,et al.A fast two-stage classification method for high-dimensional remote sensing data[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(1):182-191.
  • 7LEE C,CHOI E.Bayes error evaluation of the gaussian ML classifier[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):1471 -1475.
  • 8边肇祺 张学工.模式识别[M].北京:清华大学出版社,2004..
  • 9SERPICO SB,BRUZZONE L.A new search algorithm for feature selection in hyperspectral remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1360 -1367.

共引文献35

同被引文献14

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部