期刊文献+

基于模糊集的蚁群聚类算法的改进 被引量:1

Improvement of fuzzy-set-based ant colony clustering algorithm
下载PDF
导出
摘要 改进了LF算法,提出了一种基于模糊集理论的蚁群聚类新方法。首先定义了平均距离,其次在“相似”的概念上引入模糊集理论,定义了数据对象与其邻域内对象相似程度的隶属函数,最后该数据对象的拾起或放下由隶属度与置信水平λ相比较来决定。该算法避免了LF算法中不相似的数据对象本该被拾起而可能未被拾起,相似的数据对象本该被放下而可能未被放下的弊端,并简化了LF算法。 LF algorithm was improved and a new method of ant colony clustering based on fuzzy set theory was put forward. Firstly, the average distance was defined, Then, fuzzy set theory was introduced into the concept of similarity, and the membership function of similar degree between a data object and its neighbor was defined. Finally, the pickup or drop of this data object was determined by the comparison between degree of membership and confidence level λ. The new method overcomes such shortcomings in LF algorithm as that dissimilar data object may not be picked up and similar data object may not be dropped, and simplifies LF algorithm.
出处 《计算机应用》 CSCD 北大核心 2006年第8期1950-1952,共3页 journal of Computer Applications
关键词 聚类 模糊集 蚁群算法 clustering fuzzy set ant colony algorithm
  • 相关文献

参考文献5

  • 1杨欣斌,孙京诰,黄道.一种进化聚类学习新方法[J].计算机工程与应用,2003,39(15):60-62. 被引量:41
  • 2LUMER E,FAIETA B.Diversity and adaptation in populations of clustering ants[A].Proceedings of third international conference on simulation of adaptive behavior:from animals to animates 3[C].Cambridge,MA:MIT Press,1994.499 -508.
  • 3WU B,SHI Z.A clustering algorithm based on swarm intelligence[A].Proceedings IEEE international conferences on info-tech & info-net proceeding[C].Beiiing,2001.58-66.
  • 4杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 5KANADE PM,HALL LO.Fuzzy Ants as a Clustering Concept[A].Proceedings of the 22nd International Conference of the North American Fuzzy Information Processing Society[C].USA,2003.227-232.

二级参考文献17

  • 1贾利民,李平,聂阿新.新一代的铁路运输系统——铁路智能运输系统[J].交通运输工程与信息学报,2003,1(1):81-86. 被引量:6
  • 2Bilchev G,Parmee I C.Searching heavily contrained design spaces[C]. In:Proc Of 22^nd Int Conf Computer Aided Design'95,Yelta:Ukraine, 1995 : 230-235.
  • 3Colomi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C].In:Proc of 1^sl European conf Artificial Life.
  • 4Ramos V, Merelo J J. Self-organized stigmergic document maps: environment as a mechanism for context learning [A]. In: Alba E, Herrera F, Merelo J J, et al. , ed.AEB' 2002 - 1st Spanish conference on evolutionary and bioinspired algorithms[C]. Merida, 2002. 284-293.
  • 5Yang Y, Kamel M. Clustering ensemble using swarm intelligence[A]. In: IEEE swarm intelligence symposium [C]. Piscataway, NJ: IEEE service center, 2003. 65-71.
  • 6Wu B,Shi Z. A clustering algorithm based on swarm intelligence[A]. In: Proceedings IEEE international conferences on info-tech & info-net proceeding[C]. Beijing,2001. 58-66.
  • 7Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitionings[A]. In: Proceedings of Artificial Intelligence[C]. Edmonton: AAAI/MIT Press, 2002. 93-98.
  • 8Ayad H, Kamel M. Topic discovery from text using aggregation of different clustering methods[A]. In: Cohen R,Spencer B ed. Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence[C]. Calgary, 2002. 161-175.
  • 9Bonabeau E, Dorigo M, T heraulaz G. Swarm intelligencefrom natural to artificial system[M]. New York: Oxford University Press, 1999.
  • 10Deneubourg J L, Goss S, Franks N, et al. The dynamics of collective sorting: robot-like ant and ant-like robot[A]. In: Meyer J A, Wilson S W ed. Proceedings first conference on simulation of adaptive behavior: from animals to animats[C]. Cambridge, MA: MIT Press, 1991. 356-365.

共引文献72

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部