期刊文献+

时频重排方法在管道导波信号处理中的应用 被引量:2

Time-Frequency Reassignment Method and its Application in Pipeline Guided-wave Signals Processing
下载PDF
导出
摘要 针对超声导波的多模态和频散特性会导致信号波包在结构中传播发生展宽的现象,研究了400 kHz时的管道导波时域信号。指出了用时频分析方法可以直观地描述导波信号在传播过程中的能量分布,准确反映主要模态信息和各模态群速度变化趋势,建立与导波频散曲线间的对应关系,并且利用时频重排的方法可以进一步提高分析结果的可读性。 The multi-modes and dispersive effect of ultrasonic guided wave leads to the spreading of the wavepacket propagated in a structure. The signal of ultrasonic guided wave propagated in a pipe at 400 kHz are studied. Results show that time-frequency analysis method can be used to describe the energy distribution of guided wave signal , give the main modes information and show the trend of group velocity changes. From these, the corresponding relation between the signal in time space and group velocity dispersion curves can be established. A reassignment method for nonstationary time-frequency analysis creates a modified version of a representation by moving its values away from where they are computed, so as to procluee a better localization of the signal components and improve the readability of the representation in the study.
出处 《无损检测》 北大核心 2006年第7期337-340,共4页 Nondestructive Testing
基金 国家自然科学基金项目(10272007 10372009 60404017) 北京市自然科学基金项目(4052008) 北京市教委资助项目(KZ200510005004 KM200310005012)
关键词 时频分析 重排 导波信号 频散 Time-frequency analysis Reassignment Guided-wave signal Dispersion
  • 相关文献

参考文献9

  • 1何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展,2001,31(2):203-214. 被引量:125
  • 2Proser WH,Seale MD.Time-frequency analysis of the dispersion of Lamb modes[J].J Acoust Soc Am,1999,105(5):2669-2676.
  • 3Marc Niethammer,Jacobs Laurence J.Time-frequency representation of Lamb waves using the reassigned spectrogram[J].J Acoust Soc Am,2000,107(5):19.
  • 4郑祥明,顾向华,史立丰,史耀武.超声兰姆波的时频分析[J].声学学报,2003,28(4):368-374. 被引量:22
  • 5Hegeon Kwun,Bartels Keith A,Christopher Dynes.Dispersion of longitudinal waves propagating in liquidfilled cylindrical shells[J].J Acoust Soc Am,1999,105(5):2601-2611.
  • 6刘增华 何存富.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].声学学报,2003,28(4):368-374.
  • 7Auger F,Flandrin F.Improving the readability of time-frequency and time-scale representation by the reassignment method[J].IEEE Trans On Signal Processing,1995,43(5):1068 1089.
  • 8何存富,李隆涛,吴斌.超声导波在管道中传播的数值模拟[J].北京工业大学学报,2004,30(2):129-133. 被引量:36
  • 9何存富,刘增华,郑璟瑜,吴斌,王秀彦.管道导波检测中传感器数量和频率特性研究[J].北京工业大学学报,2004,30(4):393-397. 被引量:26

二级参考文献33

  • 1吕干霖,黎宗潼,蔡杰.超声检测缺陷模糊识别模型[J].无损检测,1996,18(5):121-124. 被引量:2
  • 2陆俭伟,吕干霖,黎宗潼,杨松章.管材超声探伤中缺陷模糊模式识别方法研究[J].声学学报,1996,21(1):20-28. 被引量:7
  • 3胡建恺,谢强,顾建新,沈黎明,郑永平.采用数字信号处理的复合材料超声谱分析[J].应用声学,1996,15(6):11-15. 被引量:2
  • 4阿肯巴赫 徐植信译.弹性固体中波的传播[M].上海:同济大学出版社,1992..
  • 5J.西拉德.超声检测新技术[M].北京:科学出版社,1991..
  • 6张善元 杨桂通.弹性动力学[M].北京:铁道出版社,1989..
  • 7Chimenti D E,Martin R W.Nondestructive evaluation of composite laminates by leaky lamb Waves.Ultrasonics,1991;29(1):13—21.
  • 8Alleyne D N,Pialucha T P,Gawley P.A signal regeneration technique for long-range propagation of dispersive Lamb waves.Ultrasonics,1993;31(3):201—204.
  • 9Alleyne D, Cawley P. A two-dimensional fourier transform method for the measurement of propagating multimode signals. J. Acou.st. Soc. Am., 1991; 89(3): 1159---1168.
  • 10Cohen L. Time-frequency distributions: a review. Proceedings of the IEEE. 1989; 77(7): 941--981.

共引文献194

同被引文献42

  • 1刘增华,何存富,杨士明,王秀彦,吴斌.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].机械工程学报,2006,42(3):171-178. 被引量:46
  • 2王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 3王悦民,孙丰瑞,康宜华,武新军.基于磁致伸缩效应的管道检测纵向导波模型[J].华中科技大学学报(自然科学版),2006,34(12):65-67. 被引量:11
  • 4NIETHAMMER M, JACOBS L J, QU J, et al. Time- frequency representation of Lamb waves using the reassigned spectrogram[J]. Journal of Acoustical Society of America, 2000, 107(5): L19-L24.
  • 5AUGER F, FLANDRIN E Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089.
  • 6KASS M, WITK1N A, TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1987, 1(4): 321-331.
  • 7OZERTEM U, ERCLOGMUS D. Nonparametric snakes[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2361-2368.
  • 8MULLER K R, MIKA S, RATSCH G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201.
  • 9SMOLAA J. Learning with kernels[D]. Berlin: Technical University of Berlin, 1998.
  • 10PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部