期刊文献+

Kadom tsev-Petviashvili型方程的行波解 被引量:1

Traveling Wave Solutions to Kadomtsev-Petviashvili Equation
下载PDF
导出
摘要 研究含有两个参数的K-P型方程.在非线性项满足一定指数增长条件下,利用泛函分析中的没有Palais-Sm ale条件的山路引理和相应的Sobolev紧嵌入定理,证明了该方程非平凡行波解的存在性. The generalized K-P (Kadomtsev-Petviashvili) equation with two parameters was studied. The existence of traveling wave solution of this equation was proved under some exponentially increasing assumptions for nonlinear term by using the mountain pass theorem without Palais-Smale conditions and corresponding Sobolev compact embedding theorem.
作者 胡越 杨晗
出处 《西南交通大学学报》 EI CSCD 北大核心 2006年第4期537-540,共4页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(10301026)
关键词 K-P方程 行波解 山路引理 存在性 Sobolev紧嵌入定理 K-P equation traveling wave solution mountain pass theorem existence Sobolev compact embedding theorem
  • 相关文献

参考文献10

  • 1KORTEWEG K J,DEVRIES G.On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves[J].Philos.Mag.Ser.,1958,39(5):422-443.
  • 2KADOMDTSEY B B,PETVIASHVILI V I.On the stability of solitary wave in weakly dispersing media[J].Sovit.Phys.Doki.,1970,15:539-541.
  • 3LAEDKE W,SPATSCHEK K H.Nonlinear ion-acoustic waves in weak magnetic fields[J].J.Phys.Fluids,1982,25:985-989.
  • 4HIYAMOGGI B K S.Nonlinear ion-acoustic waves in weak magnetized plasma and Zakharov-Kuznetsov equation[J].J.Plasma Phys.,1989,41:83-88.
  • 5BOURGAIN J.On the Cauchy problem for the Kadomtesv-Petviashvili equation[J].Geometric and Functional Analysis,1993,3:315-341.
  • 6WILLEM M.On the generalized Kadomtsev-Petviashvili equation[J].Seminaire do Mathematique,1995,96:213-222.
  • 7SHIYAMOGGI B K.The painleve analysis of the Zakharov-Kuznetsov equation[J].Physica Scripa,1990,42:641-642.
  • 8AIZICOVICI S,WEN S L.Anti-perodic traveling wave solutions to a forced two-dimensional generalized Kdv equation[J].J.Math.and Anal.,1993,174:556-565.
  • 9BESOV O V,ILIN V P,NIKOLSKII S M.Integral representations of functions and imbeddings theorems[M].Vol Ⅰ.New York:Wiley,1978:50-89.
  • 10AMBROSETT I,RABINOWITZ P.Dual variational methods in critical point theory and applications[J].J.Funct.Analysis,1973:349-381.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部