期刊文献+

连续时间线性稳定系统的混沌反控制 被引量:1

Chaos anti-control in continuous-time linear stable system
下载PDF
导出
摘要 针对连续时间线性稳定系统跟踪任意混沌系统的实现方法,基于自适应控制策略,设计了自适应控制器,使连续时间线性稳定系统的动态轨迹跟踪任意给定的混沌系统的动态轨迹,从而实现连续时间线性稳定系统的混沌化,并基于Lyapunov稳定性理论,证明了自适应控制器设计的正确性。以二阶连续时间线性稳定系统跟踪Duffing混沌系统和三阶连续时间线性稳定系统跟踪Lorenz混沌系统为例,说明了该方法的设计过程。仿真结果表明了该方法的有效性。 The method of chaos anti-control in continuous-time linear stable system is studied. According to adaptive control approach and Lyapunov stability theorem, chaos anti-control in continuous-time linear proper adaptive controller to track the given chaotic system and through the second-order linear stable system tracking Duf- ring chaotic system and the third-order linear stable system tracking Lorenz chaotic system. Numerical simulations show the effectiveness of the proposed method,
出处 《电机与控制学报》 EI CSCD 北大核心 2006年第4期407-410,共4页 Electric Machines and Control
关键词 自适应控制 线性稳定系统 混沌 反控制 adaptive control linear stable system chaos, anti-control
  • 相关文献

参考文献7

二级参考文献22

  • 1[10]Chen G R 1981 IEEE Trans. Circuits Syst. Soc. Newsletter, Match 1998, 1
  • 2[11]Chen G R and Lai D 1998 Int. J. Bifur. Chaos. 8 1585
  • 3[12]Wang X F and Chen G R 1999 Int. J. Bifur. Chaos. 9 1435
  • 4[13]Wang X F and Chen G R 2000 Int. J. Bifur. Chaos. 10 549
  • 5[14]Wang X F and Chen G R 2000 IEEE Trans, Circuits Syst. 47 1539
  • 6[15]Wu C W and Chua L O 1996 Int. J. Bif. Chaos. 6 801
  • 7[16]Nijmeijer H and Berghuis H 1995 IEEE Trans, Circuits Syst. 42 473
  • 8Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990,64(11):1196-1199.
  • 9Pyragas K. Continuous control of chaos by self-feedback[J]. Phys Lett A, 1992,170(6):421-428.
  • 10Yang W, Ding M, Mandell A J, et al. Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders[J]. Phys Rev E, 1995,51(1):102-110.

共引文献44

同被引文献14

  • 1王占山,黄玮,陈钢.连续系统的混沌反控制方法[J].沈阳理工大学学报,2006,25(1):22-25. 被引量:2
  • 2任海鹏,刘丁,韩崇昭.基于直接延迟反馈的混沌反控制[J].物理学报,2006,55(6):2694-2701. 被引量:21
  • 3楼京俊,朱石坚,何琳.混沌隔振方法研究[J].船舶力学,2006,10(5):135-141. 被引量:7
  • 4Cha Y T. Chaos in a three variable model of an excit- able cell[J]. Physiea: D, 1985, 16: 233-274.
  • 5Kiss I, Gaspar V, Nyikos L, et al. Controlling elec- trochemical chaos in the copper phosphoric acid sys- tem]-J2. J PhysChem: A, 1997, 101: 8668-8674.
  • 6Aihara K, Takabe T, Toyoda M. Chaotic neural net- works[J]. PhysicaLetter= A, 1990, 144: 333-369.
  • 7Lou J J, Zhu S J, He L, et al. Application of chaos method to line spectra reduction[J]. Journal of Sound and Vibration, 2005, 286: 3645-3652.
  • 8Pisarchik A N, Oliveras F R. Optical chaotic commu- nication using generalized and complete synchroniza- tion J. IEEE Journal of Quantum Electronics, 2010, 46(3): 299(a)-299(1).
  • 9Li Kezan, Zhao Mingehao, Fu Xinchu. Projective synchronization of driving-response systems and its application to secure communication[-J. IEEE Trans- actions on Circuits and Systems-I, 2009, 56 (10): 2280-2291.
  • 10Grosu I, Banerjee R, Roy P K, et al. Design of cou- pling for synchronization of chaotic oscillators]-J. Physical Review: E, 2009, 80(1): 016212 1)- 016212(8).

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部