期刊文献+

应用FISH技术鉴定肿瘤CGH微阵列BAC克隆

Identification of BAC clones for array CGH in human cancer by FISH technique
下载PDF
导出
摘要 目的:鉴定用于肿瘤比较基因组杂交(CGH)微阵列细菌人工染色体(BAC)克隆的质量。方法:常规法制备健康自愿者外周血染色体标本;BAC(获自RPCI-11文库和CTC文库)定位信息参考UCSC和NCBI资源数据库编辑;探针用切口平移法分别标记上生物素-16-dUTP或地高辛-11-dUTP;各BAC克隆的精确定位在正常人中期分裂相,应用荧光原位杂交(FISH)技术进行确认。选择在肿瘤发生、发展过程中有意义的223种BAC克隆,分析它们在染色体相应区域的拷贝数和分子构成。结果:FISH分析表明:正常BAC克隆占81.62%(186/223),出现额外FISH杂交信号的BAC克隆占13.45%(30/223),定位信息错误的BAC克隆占3.58%(8/223),BAC克隆大肠菌扩增失败占1.35%(3/223)。结论:BAC克隆作为探针点样制备CGH微阵列时,FISH法鉴定是必要的。 Objective To evaluate the quality of BAC clones for CGH microarrays in the detection of tumors. Methods Chromosome preparations were made from peripheral blood of the healthy volunteers in the conventional manner. The locations of BAC (RPCI-11 library and CTC library) within the region of interest were compiled from information archived by the UCSC and the NCBI. Probes were labeled by nick-translation with biotin-16-dUTP or digoxigenin-11-dUTP. Precise localization of each BAC was confirmed using normal metaphase chromosomes by FISH technique. The copy number and molecular organization of the region of 223 BAC clones which were crucial in the development and progression of human cancers were investigated. Results The FISH analysis indicated the normal BAC clones accounted for 81.62% of the total (186/223) % the abnormal clones with additional FISH noises accounted for 13.45% (30/223); those with wrong localization pattern was 3.58% (8/223), and those with no bacterial growth was 1.35% (3/223), respectively. Conclusion FISH technique is effective and useful in the identification of BAC clones for array CGH.
出处 《吉林大学学报(医学版)》 CAS CSCD 北大核心 2006年第4期629-631,F0003,共4页 Journal of Jilin University:Medicine Edition
基金 吉林省科技厅科技发展计划项目资助课题(20010529)
关键词 染色体 人工 细菌 原位杂交 荧光 分子探针 chromosomes, artificial, bacterial in situ hybridization, fluorescence molecular probe
  • 相关文献

参考文献11

  • 1Cheung VG,Dalrymple HL,Narasimhan H,et al.A resource of mapped human bacterial artificial chromosome clones[J].Genome Res,1999,9(10):989-993.
  • 2Pollack JR,Perou CM,Alizadeh AA,et al.Genome-wide analysis of DNA copy-number changes using cDNA microarrays[J].Nat Genet,1999,23:41-46.
  • 3Mehta KR,Nakao K,Zuraek,et al.Fractional genomic alteration detected by array-based comparative genomic hybridization independently predicts survival after hepatic resection for metastatic colorectal cancer[J].Clin Cancer Res,2005,5:1791-1797.
  • 4王艳萍,周清华.基因组学在肺癌研究中从基础向临床应用的转化[J].中国肺癌杂志,2005,8(5):378-384. 被引量:2
  • 5Saito-Ohara F,Imoto I,Inoue J,et al.PPM1D Is a Potential Target for 17q Gain in Neuroblastoma[J].Cancer Res,2003,63(8):1876-1883.
  • 6Fiegler H,Carr P,Douglas EJ,et al.DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones[J].Genes Chromosomes Cancer,2003,36:361-374.
  • 7Ariyama Y,Sakabe T,Shinomiya T,et al.Identification of amplified DNA sequences on double minute chromosomes in a leukemic cell line KY821 by means of spectral karyotyping and comparative genomic hybridization[J].J Hum Genet,1998,43:187-190.
  • 8Osoegawa K,Mammoser AG,Wu C,et al.A bacterial artificial chromosome library for sequencing the complete human genome[J].Genome Res,2001,11:483-496.
  • 9Albertson DG,Pinkel D.Genomic microarrays in human genetic disease and cancer[J].Hum Mol Genet,2003,12:145-152.
  • 10Bejjani BA,Saleki R,Ballif BC,et al.Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance:is less more?[J].Am J Med Genet A,2005,3:259-267.

二级参考文献26

  • 1Battafarano R, Lewis J, Ritter J, et al. Gene expression profiling distinguishes large cell lung cancer associated with disparate clinical outcomes. Lung Cancer,2005,49(Suppl 2):S43(O-125).
  • 2Angulo B, Conde E, Tang M, et al. Global expression profiling of lung primary tumors: Correlation with pathological and genetic characteristic. Lung Cancer,2005,49(Suppl 2):S8(O-013).
  • 3Jam C, Wong M, Girard L, et al. Gene expression profiling in lung adenocarcinomas reveals signatures with respect to gender, smoking, tumor grading and disease-free survival. Lung Cancer,2005,49(Suppl 2):S133(P-072).
  • 4Gomex-Roman J, Rodriguez A, Lopez Brea M, et al. Non-small cell lung carcinomas. Gene expression analysis. Lung Cancer,2005,49(Suppl 2):S70(PD-011).
  • 5Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA,2001,98(24):13790-13795.
  • 6Lookwood W, Coe B, Garnis C, et al. Whole genome comparison of SCLC and NSCLC cells identifies novel signature genetic alteration. Lung Cancer,2005,49(Suppl 2):S9(O-016).
  • 7Garnis C, Buys T, Lockwood W, et al. Detection of novel genetic alterations in non-small cell lung carcinoma. Lung Cancer,2005,49(Suppl 2):S125(P-040).
  • 8Davies J, Shubeler D, Lam W,et al. Comprehensive epigenomic profiling of matched normal and tumour lung cell lines. Lung Cancer,2005,49(Suppl 2):S122(P-028).
  • 9Coe B, Lee E, Girard, et al. Fine mapping of SCLC tumors and cell lines by high resolution array CGH identifies novel alterations.Lung Cancer,2005,49(Suppl 2):S122(P-025).
  • 10Linnoila I, Kim H, Wang X, et al. Validation of gene associated with Achaete-scute Homologue-1 that regulate the growth of pulmonary neuroendocrine carcinomas in mice and men. Lung Cancer,2005,49(Suppl 2):S135(P-079).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部