期刊文献+

关于五边形数的补数及其渐进性质 被引量:12

On the Pentagon Numbers Complement and Its Asymptotic Properties
下载PDF
导出
摘要 对于任意的正整数n,设a(n)表示n的五边形数补数,也就是a(n)是最小的非负整数,使得n+a(n)为一五边形数m(3m-1)2.运用初等和解析的方法研究了五边形数补数列{a(n)}(n=1,2,…)的渐进性质,并给出了两种不同类型的渐进公式. For any positive integer n,let a(n) denotes the pentagon numbers complement. Thus,for any fixed positive n,a(n) is the smallest nonnegative integer number such that n+a(n) is a pentagon number m(3m-1)/2, in this paper,we study the asymptotic properties the Pentagon number complement sequence using the elementary and analytic methods, and obtain two interesting asymptotic formula for it.
机构地区 商洛学院数学系
出处 《西安工业学院学报》 2006年第3期287-289,共3页 Journal of Xi'an Institute of Technology
基金 陕西专项计划科研项目(04JK132) 商洛师范专科学校科研基金重点资助项目(05sky110)
关键词 五边形数 补数 渐进公式 pentagon number complement asymptotic formula
  • 相关文献

参考文献1

二级参考文献7

  • 1Smarandache F.Only Problems,not Solutions. Chicago:Xiquan Publ. House,1993.
  • 2Zhu Weiyi. On the k-power complement and k-power free number sequence. Smaran-dache Notions Journal,2004,14:66-69.
  • 3Yao Weili.On the k-power complement sequence.Research on Smarandache Problems in Number Theory.2004,Hexis,43-46.
  • 4Liu Hongyan and Lou Yuanbing. A note on the 29-th Smarandache's problem. Smaran-dache Notions Journal,2004,14:156-158.
  • 5Xu Zhefeng. On the additive k-power complements. Research on Smarandache Problems in NUmber Theory.2004,Hexis,13-16.
  • 6Tom M.Apostol. Introduction to Analytic Number Theory. Springer-Verlag:New York, 1976.
  • 7Pan Chengdong and Pan Chengbiao.The esementary number theory.Beijing University Press:Beijing.2003.

共引文献19

同被引文献43

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部