期刊文献+

一种鲁棒的摄像机运动分类算法 被引量:3

A Robust Approach to Camera Motion Classification
下载PDF
导出
摘要 摄像机运动分类是基于内容的视频分析和理解的重要问题.本文通过对运动矢量场的分析,提出了一种基于统计学习的、分层次的摄像机运动分类算法.该算法利用支持向量机(SVM)在有限样本条件下的学习能力,实现摄像机运动类型的初步分类;然后,充分考虑运动矢量场的方向和位置信息,进一步区分缩放和旋转操作,并识别摄像机平移操作的方向.算法在运动矢量的预处理过程中引入摄影规则,有效地降低了前景运动噪声的影响. Camera motion classification is an important issue in content-based video analysis. In this paper, a robust and hierarchical camera motion classification approach based on statistical learning is proposed. As Support Vector Machines (SVM) has a very good learning capacity with limited sample set without incorporating problem domain knowledge, in the first step, SVM is employed to classify camera motion operations into two classes:translation and nontranslation operations. Then, rotation and zoom operations are distinguished using motion vectors location and direction. The direction of translation operation is also identified. In the pre-processing step, cinematic rule is utilized to filter atypical noise and foreground motion noise.
作者 耿玉亮 须德
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第7期1342-1346,共5页 Acta Electronica Sinica
基金 北京交通大学基金(No.2004SM013)
关键词 摄像机运动 分类 支持向量机 视频 camera motion classification SVM video
  • 相关文献

参考文献9

  • 1J C Huang,W S Hsieh.Automatic feature-based global motion estimation in video sequences[J].IEEE Trans.Consumer Electronics,2004,50 (3):911-915.
  • 2E Kumar,M Biswas,T Q Nguyen.Global motion estimation in frequency and spatial domain[A].In Proc.IEEE ICASSP'2004[C].Quebec,Canada:IEEE,2004.17-21.
  • 3陈韩锋,戚飞虎.基于运动矢量场的双迭代全局运动估计方法[J].通信学报,2004,25(6):126-131. 被引量:3
  • 4X Q Zhu,X Y Xue,J P Fan,L D Wu.Qualitative camera motion classification for content-based video indexing[A].In Proc.3rd IEEE PCM,LNCS 2532[C].Taiwan:IEEE,2002.1128-1136.
  • 5L Y Duan,M Xu,Q Tian.Nonparametric motion model with applications to camera motion pattern classification[A].In Proc.ACM Multimedia's 2004[C].NY,USA:ACM,2004.328:331.
  • 6S Z,K K Ma.A new diamond search algorithm for fast block-matching motion estimation[J].IEEE Trans.Image Processing,2000,9 (2):287-290.
  • 7S C Park,H S Lee,S W Lee.Qualitative estimation of camera motion parameters from the linear composition of optical flow[J].Pattern Recognition,2004,37 (4):767-779.
  • 8ISO/IEC JTC1/SC29/WG11/N4062,Information technology-Multimedia content description interface-Part 3:Visual[S].
  • 9N Cristianini,J Shawe-Taylor.An introduction to support vector machines[M].Cambridge,UK:Cambridge University Press,2000.

二级参考文献7

  • 1俞天力,章毓晋.基于全局运动信息的视频检索技术[J].电子学报,2001,29(z1):1794-1798. 被引量:19
  • 2DUFAUX F, KONRAD J. Efficient, robust, and fast global motion estimation for video coding[J]. IEEE Trans Image Processing,2000, 9(3): 497-501.
  • 3RATH G B, MAKUR A. Iterative least squares and compression based estimations for a four-parameter linear global motion model and global motion compensation[J]. IEEE Trans Circuits and Systems for Video Technology, 1999, 9(7): 1075-1099.
  • 4TSE Y T, BAKER R L. Global zoom/pan estimation and compensation for video compression[A]. ICASSP91 [C]. 1991. 2725-2728.
  • 5WU S F, KITTLER J. A differential method for simultaneous estimation of rotation, change of scale and translation[J]. Signal Processing: image Communication, 1990, 2: 69-80.
  • 6LI W P, et al. MPEG-4 Video Verification Model version 16.0[S]. ISO/IEC/JTC1/SC29/WG11, Doc. No. N3312, Netherlands, 2000.
  • 7贺玉文,赵黎,钟玉琢,杨士强.快速鲁棒的全局运动估计算法[J].软件学报,2001,12(8):1220-1228. 被引量:15

共引文献2

同被引文献23

  • 1徐淑平.视像中的摄像机运动检测[J].计算机技术与发展,2007,17(7):1-3. 被引量:2
  • 2Zelniker E E, Gong S, Xiang T. Global abnormal behaviour detection using a networkof CCTV cameras [ A ]. The Eighth International Workshop on Visual Surveillance [ C ]. Marseille: FECCV, 2008.1 - 8.
  • 3Wang X, Tieu K, Grimson E L. Correspondence-free activity analysis and scene modefing in multtple camera views [ J ]. IEEE Transactons on Pattern Analysis and Mchine Intelligence, 2010,32( 1 ) :56 - 71.
  • 4Gray D, Tao H. Vitwpoint invariant pedestrina recognition with Russell D, Gong S, Mary Q. Minimum cuts of a time-varying backgroung [ A]. Proceedings of British Machine Vision Confer- ence[ C ]. Edinburgh: BMVA, 2006. 809 - 818.
  • 5Perona P, Zelnik-Manor L. Self-tuning spectral clustering[A]. Advances in Neural Information Processing Systems 17 [C]. USA:MIT Press,2004. 1601 - 1608.
  • 6Loy C C, Xiang T, Gong S. Incremental activity modeling in multiple disjoint cameras [ J ]. IEEE Transactions on Pattern Anlysis and Machine Intelligence,2012,34(9):1799- 1813.
  • 7Russell D, Gong S, Mary Q. Minimum cuts of a time-varying backgroung[ A]. Proceedings of British Machine Vision Confer- ence[ C]. Edinburgh: BMVA, 2006. 809 - 818.
  • 8Perona P, Zelnik-Manor L. Self-tuning spectral clustering[A]. Advances in Neural Information Processing Systems 17 [ C]. USA:MIT Press,2004. 1601 - 1608.
  • 9Liu Y, Wu F. Video semantic concept detection using multi- modality subspace correlation propagation [ A ]. Advances in Multimedia Modeling [ C ]. Berlin, Heidelberg: Springer-Ver- lag, 2006,4351 : 527 - 534.
  • 10Loy C C, Xiang T, Gong S. Multi-camera activity correlation analysis[A]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[ C ]. Miami, Florida, USA: IEEE,2009. 1988 - 1995.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部