摘要
摄像机运动分类是基于内容的视频分析和理解的重要问题.本文通过对运动矢量场的分析,提出了一种基于统计学习的、分层次的摄像机运动分类算法.该算法利用支持向量机(SVM)在有限样本条件下的学习能力,实现摄像机运动类型的初步分类;然后,充分考虑运动矢量场的方向和位置信息,进一步区分缩放和旋转操作,并识别摄像机平移操作的方向.算法在运动矢量的预处理过程中引入摄影规则,有效地降低了前景运动噪声的影响.
Camera motion classification is an important issue in content-based video analysis. In this paper, a robust and hierarchical camera motion classification approach based on statistical learning is proposed. As Support Vector Machines (SVM) has a very good learning capacity with limited sample set without incorporating problem domain knowledge, in the first step, SVM is employed to classify camera motion operations into two classes:translation and nontranslation operations. Then, rotation and zoom operations are distinguished using motion vectors location and direction. The direction of translation operation is also identified. In the pre-processing step, cinematic rule is utilized to filter atypical noise and foreground motion noise.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2006年第7期1342-1346,共5页
Acta Electronica Sinica
基金
北京交通大学基金(No.2004SM013)