期刊文献+

分层聚类分析方法确定α背景波的脑电地形图模式 被引量:1

Topographic classification of electroencephalographic alpha background activity patterns by hierarchical cluster analysis
下载PDF
导出
摘要 目的:利用分层聚类模式识别方法对正常人α频段的单频率脑电地形图模式进行分类,确定正常人α频段的脑电地形图的模式。方法:选择1993-01/1998-12解放军总医院的研究生和工作人员为正常受试者214名(均经知情同意),年龄20~59岁。使用美国Neuroscan公司基于通用计算机系统的脑电采集系统,连续记录脑电信号。受试者在安静清醒条件下记录,使用10%~20%系统放置电极,单极记录28通道脑电图,参考电极为A1+A2。连续记录100~240s的脑电,取1s为1个时间段进行FFT变换,采样率256Hz,频率分辨率1Hz。用眼动伪迹矫正程序去除伪迹。使用脑电波幅频谱,脑电地形图用平均平方根功率(波幅频谱)表示。结果:214名受试者全部进入结果分析。①用分层聚类分析方法可以把α波脑电地形图归为12种模式。各个模式所占的百分比为:模式1:13.08%(28/214),模式2:28.22%(68/214),模式3:2.34%(5/214),模式4:0.93%(2/214),模式5:5.14%(11/214),模式6:1%(3/214),模式7:48%(16/214),模式8:3.27%(7/214),模式9:14.02%(30/214),模式10:5.14%(11/214),模式11:11.68%(25/214),模式12:3.74%(8/214)。②α波幅和分布明显影响α脑电地形图的模式。③根据聚类样本含量可以把α波脑电地形图归为5大模式,其中单一聚类的2个:聚类(1,n=28),聚类(2,n=68),复合聚类的3个:聚类(3+4+5+6+7,n=37),聚类(8+9,n=37),聚类(10+11+12,n=44)。④75.23%(161/214)的α波呈顶枕区分布,24.77%(53/214)的α波呈顶额区分布。结论:分层聚类分析是区别不同脑电地形图模式的有力工具。可以作为一个自动诊断工具使用。许多疾病可以产生不正常的脑电地形图模式,正常的α波脑电的模式分类和解释对脑电图临床诊断是非常重要的。 AIM: To identify the pattern of α rhythm in normal subjects by a topographic classifiaation of electroencephalographic (EEG) α background activity patterns with by hierarchical cluster analysis. METHODS: 214 normal subjects (informed and agreed) aged 20-59 years of postgraduate and staff of General Hospital of Chinese PLA from January 1993 and December 1998 were selected. Continuous EEG was collected with a PC-based EEG acquisition system (Neuroscan). The examinees were recorded from 28-channels using 10%-20% system monopolor montage (AI+A2) in a resting condition. The continuous 100-240 seconds EEG data were Segmented into 1 second epochs for FFT transform (sampled at 256 Hz, 1 Hz frequency resolution). The epochs contaminated by eye movement-related artifacts were excluded from analysis using a rejection criterion procedure. With the EEG, the brain electrical activity map (BEAM) was expressed by root-mean-square power from amplitude spectrum data. RESULTS: All the 214 subjects were involved in the result analysis. ① The α topographical maps were classified into twelve patterns by Hierarchical cluster analysis. Percentage of the twelve different patterns: Pattern h 13.08% (28/214), Pattern 2: 28.22% (68/214), Pattern 3: 2.34% (5/214), Pattern 4: 0.93% (2/214), Pattern 5: 5.14% (11/214), Pattern 6: 1% (3/214),Pattern 7: 7.48% (16/214),Pattern 8: 3.27% (7/214), Pattern 9: 14.02% (30/214), Pattern 10: 5.14% (11/214), Pattern 11: 11.68% (25/214), Pattern 12: 3.74% (8/214). ②The amplitude and distribution of α activity obviously influenced classification of α topographic patterns. ③Five patterns were classified according to the quantity of subjects, including 2 single clusters: patterm 1=cluster (1, n=28), pattern 2=cluster (2, n=68), and 3 compound clusters: pattern 3=cluster (3+4+5+6+7, n=37), pattern 4=cluster (8+9, n=37), pattern 5=cluster (10+11+12, n=44). ④75.23% (161/214) α topography in parietal areas showed the occipital distribution and 24.77% (53/214) showed frontal distribution. CONCLUSION: Hierarchical cluster analysis is a very powerful method to diseriminate different EEG patterns. It ean be used as an automatie diagnostic tool. Different diseases can produce a number of abnormal EEG patterns and it is important to elassify and interpret normal α EEG patterns for clinical diagnosis.
出处 《中国临床康复》 CSCD 北大核心 2006年第30期30-33,F0003,共5页 Chinese Journal of Clinical Rehabilitation
  • 相关文献

参考文献11

  • 1Doppelmayr M,Klimesch W,Sauseng P,et al.Intelligence related differences in EEG-bandpowe.Nreurosci Lett 2005;381(3):309-13
  • 2Bruder GE,Tenke CE,Warner V et al.Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders.Biol Psychiatry 2005;57(4):328-35
  • 3Weems SA,Zaidel E,Berman S,et al.Asymmetry in alpha power predicts accuracy of hemispheric lexical decision.Clin Neurophysiol 2004; 115(7):1575-82
  • 4RamachandranNair R,Weiss SK.Incomplete alpha coma pattern in a child.Pediatr Neurol 2005;33(2):127-30
  • 5曹起龙.脑电地形图的进展及对脑血管病的临床应用[J].中华老年心脑血管病杂志,2000,2(4):223-225. 被引量:3
  • 6Guess MJ,Wilson SB.Introduction to hierarchical clustering.J Clin Neurophysiol 2002; 19(2):144-51
  • 7刘建农,杨建功.老年痴呆、老年抑郁症、健康老人的脑电图、脑电地形图比较研究[J].中国临床康复,2002,6(9):1281-1282. 被引量:9
  • 8Thatcher RW,Biver C,Gomez JF,et al.Estimation of the EEG power spectrum using MRI T (2) relaxation time in traumatic brain injury.Clin Neurophysiol 2001;112(9):1729-45
  • 9Coutin-Churchman P,Moreno R,Anez Y,et al.Clinical correlates of quantitative EEG alterations ia alcoholic patients.Clin Neurophysiol 2006;117(4):740-51
  • 10贾渭泉,匡培根,贾桂梅,王晶,李永昌.天容穴治疗偏头痛前后脑动脉血流速度和脑电地形图对称性变化的研究[J].脑与神经疾病杂志,2002,10(5):282-284. 被引量:2

二级参考文献9

共引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部