摘要
目的:利用分层聚类模式识别方法对正常人α频段的单频率脑电地形图模式进行分类,确定正常人α频段的脑电地形图的模式。方法:选择1993-01/1998-12解放军总医院的研究生和工作人员为正常受试者214名(均经知情同意),年龄20~59岁。使用美国Neuroscan公司基于通用计算机系统的脑电采集系统,连续记录脑电信号。受试者在安静清醒条件下记录,使用10%~20%系统放置电极,单极记录28通道脑电图,参考电极为A1+A2。连续记录100~240s的脑电,取1s为1个时间段进行FFT变换,采样率256Hz,频率分辨率1Hz。用眼动伪迹矫正程序去除伪迹。使用脑电波幅频谱,脑电地形图用平均平方根功率(波幅频谱)表示。结果:214名受试者全部进入结果分析。①用分层聚类分析方法可以把α波脑电地形图归为12种模式。各个模式所占的百分比为:模式1:13.08%(28/214),模式2:28.22%(68/214),模式3:2.34%(5/214),模式4:0.93%(2/214),模式5:5.14%(11/214),模式6:1%(3/214),模式7:48%(16/214),模式8:3.27%(7/214),模式9:14.02%(30/214),模式10:5.14%(11/214),模式11:11.68%(25/214),模式12:3.74%(8/214)。②α波幅和分布明显影响α脑电地形图的模式。③根据聚类样本含量可以把α波脑电地形图归为5大模式,其中单一聚类的2个:聚类(1,n=28),聚类(2,n=68),复合聚类的3个:聚类(3+4+5+6+7,n=37),聚类(8+9,n=37),聚类(10+11+12,n=44)。④75.23%(161/214)的α波呈顶枕区分布,24.77%(53/214)的α波呈顶额区分布。结论:分层聚类分析是区别不同脑电地形图模式的有力工具。可以作为一个自动诊断工具使用。许多疾病可以产生不正常的脑电地形图模式,正常的α波脑电的模式分类和解释对脑电图临床诊断是非常重要的。
AIM: To identify the pattern of α rhythm in normal subjects by a topographic classifiaation of electroencephalographic (EEG) α background activity patterns with by hierarchical cluster analysis.
METHODS: 214 normal subjects (informed and agreed) aged 20-59 years of postgraduate and staff of General Hospital of Chinese PLA from January 1993 and December 1998 were selected. Continuous EEG was collected with a PC-based EEG acquisition system (Neuroscan). The examinees were recorded from 28-channels using 10%-20% system monopolor montage (AI+A2) in a resting condition. The continuous 100-240 seconds EEG data were Segmented into 1 second epochs for FFT transform (sampled at 256 Hz, 1 Hz frequency resolution). The epochs contaminated by eye movement-related artifacts were excluded from analysis using a rejection criterion procedure. With the EEG, the brain electrical activity map (BEAM) was expressed by root-mean-square power from amplitude spectrum data.
RESULTS: All the 214 subjects were involved in the result analysis. ① The α topographical maps were classified into twelve patterns by Hierarchical cluster analysis. Percentage of the twelve different patterns: Pattern h 13.08% (28/214), Pattern 2: 28.22% (68/214), Pattern 3: 2.34% (5/214), Pattern 4: 0.93% (2/214), Pattern 5: 5.14% (11/214), Pattern 6: 1% (3/214),Pattern 7: 7.48% (16/214),Pattern 8: 3.27% (7/214), Pattern 9: 14.02% (30/214), Pattern 10: 5.14% (11/214), Pattern 11: 11.68% (25/214), Pattern 12: 3.74% (8/214). ②The amplitude and distribution of α activity obviously influenced classification of α topographic patterns. ③Five patterns were classified according to the quantity of subjects, including 2 single clusters: patterm 1=cluster (1, n=28), pattern 2=cluster (2, n=68), and 3 compound clusters: pattern 3=cluster (3+4+5+6+7, n=37), pattern 4=cluster (8+9, n=37), pattern 5=cluster (10+11+12, n=44). ④75.23% (161/214) α topography in parietal areas showed the occipital distribution and 24.77% (53/214) showed frontal distribution.
CONCLUSION: Hierarchical cluster analysis is a very powerful method to diseriminate different EEG patterns. It ean be used as an automatie diagnostic tool. Different diseases can produce a number of abnormal EEG patterns and it is important to elassify and interpret normal α EEG patterns for clinical diagnosis.
出处
《中国临床康复》
CSCD
北大核心
2006年第30期30-33,F0003,共5页
Chinese Journal of Clinical Rehabilitation