期刊文献+

基于提升方法的脉搏波信号处理 被引量:4

Pulse Wave Signal Processing Based on the Lifting Scheme
下载PDF
导出
摘要 小波变换在信号处理中有着广泛的应用,但是传统的小波变换依赖于傅立叶变换,有大量的卷积运算,运算速度较慢。文章讨论了第二代小波变换的原理,并采用第二代小波变换来处理脉搏波信号。提升算法是构造第二代小波的关键技术,它不依赖于傅立叶变换,可实现整数小波变换,大大提高了运算速度。通过分析提升算法的基本原理,尝试用第二代小波变换对脉搏波信号进行去噪处理;并介绍了小波软阈值法和硬阈值法,分别采用这两种方法进行降噪处理,将结果与传统小波变换处理的结果进行比较,得到了令人满意的效果。 Wavelet transform is used widely in signal processing. But the classical wavelet transform depends on Fourier transform , and its realization is based on a large amount of convolution computation, so the operation speed is low. In the paper the second generation wavelet transform is discussed and used to process pulse wave signal. Lifting scheme is the key technique to construct the second generation wavelet transform. It doesnt depend on Fourier transform and can realize integer transform, which improves the operation speed greatly. The method of the hard threshold and the soft threshold used in wavelet denoising is introduced and the second generation wavelet transform is used to denoise pulse wave signal with different method in the paper. The final result is compared with the result processed by traditional wavelet transform , and the effect is satisfactory.
出处 《计算机仿真》 CSCD 2006年第7期98-100,共3页 Computer Simulation
关键词 第二代小波变换 脉搏波 提升算法 信号去噪 Second generation wavelet transform Pulse wave Lifting scheme Signal denoising
  • 相关文献

参考文献4

  • 1Wim Sweldems.The lifting scheme:A construction of second generation wavelet[J].SIAM journal on mathematical analysis,1996,29(2):511-546.
  • 2E Ercelebi.second generation wavelet transform-based pitch period estmation and voiced/unvoiced decision for speech signals[J].Applied acoustics,2003,64(1):1101-1122.
  • 3R Calderbank,I Daubechinces,W Sweldens,Boon-Lock Yeo.Wavelet transforms that map intergers to intergers[J].Applied and computational harmonic analysis,1998,4(3):43-56.
  • 4I Daubechies,W Sweldens.Factoring wavelet transforms into lifting steps[J].Journal on fourier analysis,1998,4(3):39-54.

同被引文献26

引证文献4

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部