期刊文献+

一种引入奖励与惩罚机制的蚁群算法 被引量:11

Ant Colony Algorithm with Strategy of Award and Penalty
下载PDF
导出
摘要 蚁群算法是一种新型的仿生类算法,大量实验表明该算法具有较强的搜索最优解的能力,但同时与其它进化算法一样存在搜索速度慢,易于陷于局部最优的缺陷。为了克服蚁群算法在这方面的不足,该文通过引入奖励与惩罚机制,在蚂蚁搜索最优解的过程中,根据每次循环后的搜索结果,对蚁群算法中信息素更新的方法进行自适应调整,以达到从可行解中寻求尽可能好的解(满意解)的目的。通过与ACS算法的对比实验表明本算法在搜索速度和性能方面都有更好的效果。 Ant colony algorithm is a novel simulation algorithm. Lots of experiments have shown that the algorithm has great ability of searching better solution, but at the same time it is slow in searching speed and prone to fall into local optima as other evolutionary algorithms. In order to overcome the shortcoming of ant colony algorithm, a strategy with award and penalty for updating pheromone according to the searching result after every circle is presented in this paper to get a better solution in the feasible solution space. Simulation experiments show that the improved algorithm has a better solution than ACS.
出处 《计算机仿真》 CSCD 2006年第7期161-163,共3页 Computer Simulation
基金 重庆大学大学生创新基金(编号:08) 重庆大学数理学院青年科研启动基金 重庆大学高层次人才科研启动基金项目(编号:020800110420)
关键词 蚁群算法 奖励与惩罚机制 信息素更新 Ant colony algorithm Award and penalty Pheromone update
  • 相关文献

参考文献6

  • 1M Dorigo,V Maniezzo and A Colorni.Positive feedback as a search strategy[R].Technical Report 91-016,Dipartimento di Elettronica,Politecnico di Milano,IT,1991.
  • 2M Dorigo,G Di Caro and L M Gambardella.Ant algorithms for discrete optimization[J].Artificial Life,1999,5(2):137-172.
  • 3M Dorigo and L M Gambardella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computations,1997,1(1):53-66.
  • 4L M Gambardella and M Dorigo.Solving Symmetric and Asymmetric TSPs by Ant Colonies[C].In Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC'96),pages 622-627.IEEE Press,1996.
  • 5胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 6张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3. 被引量:150

二级参考文献14

  • 1张纪会 徐心和.带遗忘因子的蚁群算法[J].系统仿真学报,2000,(2).
  • 2张纪会,计算机研究与发展,2000年,1期
  • 3张纪会,系统仿真学报,2000年,2期
  • 4M Dorigo,V Maniezzo and A Colorni.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,26(1):29-41,1996.
  • 5L M Gambardella,E D Taillard,and M Dorigo.Ant colonies for the QAP[J].Journal of the Operational Research Society.(JORS) ,1999,50(2):167-1176.
  • 6A Colorni,M Dorigo,V Maniezzo,and M Trubian.Ant system for job-shop scheduling[J].Belgian Journal of Operations Research,Statistics and Computer Science (JORBEL) ,1994,34:39-53.
  • 7B Bullnheimer,R F Hartl,and C Strauss.Applying the ant system to the vehicle routing problem[M].IN I H Osman S Vo ,S Martello and C Roucairol,editors,Meta-Heuristics:Advances and Trends in Local Search Paradigms for Optimization,Kluwer Academics,1998.109-120.
  • 8D Costa and A Hertz.Ants can color graphs[J].Journal of the Operational Research Society,1997,48:295-305.
  • 9Gianni Di Caro,Marco Dorgo AntNet:Distributed Stigmergetic Control for Communication Networks[J].Journal of Artificial Intelligence Research ,1998 (9):317-365.
  • 10T Stützle and H H Hoos.Improvements on the Ant System:Introducing the MAX-MIN Ant System[J].In R F Albrecht G D Smith,N C Steele,editor.Artificial Neural Networks and Genetic Algorithms,Springer Verlag,Wien New York,1998:245-249.

共引文献166

同被引文献80

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部