期刊文献+

高维空间下基于密度的离群点探测算法实现 被引量:6

Implementation of Density-based Outlier Detection in High-dimensional Space
下载PDF
导出
摘要 离群点是数据仓库中表现行为异常的数据。对高维空间下离群点的性质进行了研究,采用高维空间数据在低维空间投影再进行探测的策略,解决了高维空间数据稀疏难以用数据点距离判断离群的问题。算法实现中选取彼此关联紧密的维,数据点之间的距离采用最近邻定义,用基于密度的离群点探测方法,能在局部空间内更有效地探测到离群点。 Outlier attributes in high - dimensional space are researched in this paper. The strategy of projecting data in high -dimensional space to lower - dimensional space is represented, which resolves the problem of sparsity of the data in high-dimensional space. The arithmetic implementation is more practical and efficient in outlier detection,in which the closed - assciation dimensions are choosed,k- nearest neighbor definition and density-based outlier detection arithmetic are adopted.
作者 熊君丽
出处 《现代电子技术》 2006年第15期67-69,共3页 Modern Electronics Technique
关键词 离群点探测 最近邻 高维空间 基于密度 数据挖掘 outlier detection k - nearest neighbor high - dimensional space density - based data mining
  • 相关文献

参考文献4

  • 1Knorr E M,Ng R T.Finding Intensional Knowledge of Distance-based Outliers.In:Atkinson M P,Orlowska M E,Valduriez P,eds.Proceedings of the 25th International Conference on Very Large Data Bases.Edinburgh,Scotland:Morgan Kaufmann,1999:211-222.
  • 2Breunig M,Kriegel H P,Raymond T.OPTICS-OF:Identifying Density-based Local Outliers[C].Proceedings of the ACM SIGMOD Internatioanl Conference on Management of Data Dalls,Texas:ACM Press,2000.
  • 3Aggarawal C C,Yu P S.Outliers Detection for High Dimensional Data:In:Aref W G,eds.Proceedings of the ACM SIGMOD International Conference on Management of Data.Santa Barbara,CA:ACM Press,2001:37-47.
  • 4Ramaswamy S,Rastogi R,Kyuseok S.Efficient Algorithms for Mining Outliers from Large Data Sets.In:Chen W D,Naughton J F,Bernstein P A,eds.Proceedings of the ACM SIGMOD Internatioanl Conference on Management of Data Dallas,Texas:ACM Press,2000:427-438.

同被引文献46

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部