期刊文献+

方向相似性聚类方法DSCM 被引量:21

The Directional Similarity-Based Clustering Method DSCM
下载PDF
导出
摘要 针对方向性数据提出了一种鲁棒的基于方向相似性度量的聚类方法DSCM·DSCM首先基于方向性度量构造目标函数,然后通过不动点迭代法对目标函数优化,获得各个样本的最终稳定状态,最后基于样本的最终状态集利用层次聚类技术实现聚类·DSCM的优势在于对方向性数据聚类时不依赖于具体的初始化参数,且能自组织地求解最优聚类划分因而有很好的鲁棒性·通过实验证实了DSCM的有效性以及对已有的两个传统方向性聚类算法的优越性· The directional similarity-based robust clustering approach DSCM for directional data is presented in this paper. The DSCM utilizes the objective function based on the directional similarity measure, and then optimizes it using the fixed point iteration method such that all the stable states of the data samples are derived. By presenting all these stable states to the hierarchical clustering algorithm AHC, the final clustering results are obtained. This new approach exhibits its robustness to initialization and capability to reasonably detect the number of clusters for clustering directional data. The experimental results demonstrate its validity and distinctive superiority over the two conventional directional clustering algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第8期1425-1431,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(6022501) 江苏省自然科学基金项目(BK2003017) 江苏省计算机信息处理重点实验室开放基金项目 教育部跨世纪优秀人才支持计划基金项目(NCET-04-0496) 教育部05年度科学研究重点基金项目(105087) 中国科学院自动化所模式识别国家重点实验室开放课题~~
关键词 方向相似性 鲁棒聚类算法 聚类有效性 directional similarity robust clustering algorithm clustering validity
  • 相关文献

参考文献17

  • 1Kantardzic Mehmed. Data Mining: Concepts, Models,Methods, and Algorithms [M]. New York: Wiley-IEEE Press, 2002
  • 2Richard O Duda, Peter E Hart, David G Stork. Pattern Classification [M]. 2nd edition. New York: John Willey and Sons Ltd, 2000
  • 3A Strehl, J Ghosh, R Mooney. Impact of similarity measures on web-page clustering [C]. In: Proc of the 7th National Conf on Artificial Intelligence: Workshop of AI for Web Search. Menlo Park, CA: AAAI Press, 2000. 58-64
  • 4K V Mardia, P Jupp. Directional Statistics [ M]. 2nd edition.New York: John Willey and Sons Ltd, 2000
  • 5I S Dhillon, E M Mareotte, U Roshan. Diametrical clustering for identifying anti-correlated gene clusters [J]. Bioinformatics,2003, 19(13): 1612-1619
  • 6A Banerjee, I S Dhillon, J Ghosh, et al. Generative model based clustering of directional data [C]. Conference on Knowledge Discovery in Data, Washington, DC, 2003
  • 7I S Dhillon, D S Modha. Concept decompositions for large sparse text data using clustering [J]. Machine Learning, 2001,42(1) : 143-175
  • 8Frank Hoppner, Frank Klawonn. A contribution to convergence theory of fuzzy e-means and derivatives [J]. IEEE Trans on Fuzzy Systems, 2003, 11(5) : 682-694
  • 9I S Dhilon, S Suvrit. Modeling data using directional distribution [ OL]. http ://www. cs. utexas. edu/users/suvrit/work/, 2003
  • 10Daxin Jiang, Chun Tang, Aidong Zhong. Cluster analysis for gene expression data: A survey [J]. IEEE Trans on Knowledge and Data Engineering, 2004, 16(11) : 1370-1387

二级参考文献13

  • 1Duda R O,Hart P E,Stork D G,Pattern classification,second edition,John Wiley&Sons,Inc,2001,Chapter 10.
  • 2Wang Shi-tong,et al..A new integrated fuzzy clustering algorithm and switching regressions.Int.J.Pattern Recognition and AI,2002,16(4):35-46.
  • 3Wang Shi-tong,et al..Note on the link relationship between probabilistic/fuzzy clustering.Int.J.Soft Computing 2004,8(7):532-526.
  • 4Wang Shi-tong,et al..Fuzzy kernel hyperball perceptron.Int.J.Applied Soft Computing,2005,5(1):67-74.
  • 5Wu K L,Yang M S.Alternative c-means clustering algorithms.Pattern Recognition,2002,35:2267-2278.
  • 6Yang M S,Wu K L.A similarity-based robust clustering method.IEEE Trans.on Pattern Analysis and Machine Intelligence,2004,26:434-448.
  • 7Marr D.Vision in A computational investigation into the human representation and processing of information,San Francisco,:Freeman,1982,Chapters 1 & 2.
  • 8Shannon C E.Communication in the presence of noise.Proc.Institute of Radio Engineers,1949,37(1):10-21.
  • 9Nyquist H.Certain topics in telegraph transmission theory,Trans.AIEE,1928,47:617-644.
  • 10Sonka M,Hlavac V,Boyle R.Image Processing.Analysis and Machine Vision,Thomson Learning and PT Press,1999:12-13.

共引文献1

同被引文献240

引证文献21

二级引证文献281

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部