摘要
设M是有末端奇点的n维正规代数簇,L是M上的丰富线丛,(M,L)的数字有效值为τ=uv(u、v是互素的正整数),:M→X是由(M,L)决定的nef-值态射,F是的一般纤维。通过研究τ的取值情况对(M,L)进行分类,给出了当u=n+1,n时(M,L)和(F,LF)的较完整的分类,推广了一些文献的结果。
Let M be a normal variety of dimension n with terminal singularities, L an ample line bundle on M, the effective value of (M,L) bet =u/v( u,v are coprime integers), φ:M→X be the nef- value morphism of (M,L), and let F be a general fiber ofφ . the classification of (M,L) can be done by studying the value of τ ,Whenu=n+ 1 ,n, the classification of (M,L) and (F,LF) are given ,the results of other papers were extended.
出处
《湛江海洋大学学报》
2006年第3期68-70,共3页
Journal of Zhanjiang Ocean University
关键词
代数簇
nef-值态射
丰富线丛
projective variery
nef-value morphism
ample line bundle