期刊文献+

关于高维代数族的nef-值态射的结构 被引量:1

On structure of nef-value morphisms of projective varieties
下载PDF
导出
摘要 设M是有末端奇点的n维正规代数簇,L是M上的丰富线丛,(M,L)的数字有效值为τ=uv(u、v是互素的正整数),:M→X是由(M,L)决定的nef-值态射,F是的一般纤维。通过研究τ的取值情况对(M,L)进行分类,给出了当u=n+1,n时(M,L)和(F,LF)的较完整的分类,推广了一些文献的结果。 Let M be a normal variety of dimension n with terminal singularities, L an ample line bundle on M, the effective value of (M,L) bet =u/v( u,v are coprime integers), φ:M→X be the nef- value morphism of (M,L), and let F be a general fiber ofφ . the classification of (M,L) can be done by studying the value of τ ,Whenu=n+ 1 ,n, the classification of (M,L) and (F,LF) are given ,the results of other papers were extended.
作者 邓芳芳
出处 《湛江海洋大学学报》 2006年第3期68-70,共3页 Journal of Zhanjiang Ocean University
关键词 代数簇 nef-值态射 丰富线丛 projective variery nef-value morphism ample line bundle
  • 相关文献

参考文献11

  • 1Mori S.Flip theorem and the existence of minimal models for 3-folds[J].J.Amer.Math.Soc.,1988,1:117-253.
  • 2Sommese J A.On the minimality of hyperplane sections of projective three-folds[J].J.Reine Angew.Math.1981,329:16-41.
  • 3Zhao Yicai.On classification of polarized varieties with non-integral nef-value[J].Proc.Amer.Math.Soc.2001,129:1907-1913.
  • 4Beltrametti M C.Sommese J A.The Adjunction Theory of Complex Projective Varieties[M].Berlin:de Gruyter,de Gruyter Walter,1995:1-452.
  • 5Beltrametti M C,Sommese J A.On the adjunction theoretic classification of polarized varieties[J].J.Reine Angrew.Math.,1992,427:157-192.
  • 6Kleiman S.Towards a numerical theory of ampleness[J].Ann.of Math.,1966,84:293-344.
  • 7Kodaira K.On a differential-geometric method in the theory of algebraic stacks[J].,Proc.Nat.Acad.Sci.USA,1953,39:1268-1273.
  • 8Serre J P.Un theoreine de dualite[J].Comm.Math.Helv.1995,29:9-26.
  • 9Hirzebruch F.Topoloical Methods in Algebraic Geometry[M].Heidelberg:Springer-Verlag,1966:1-380.
  • 10Fujita T.On polarized manifolds whose adjoint bundles are not semipositive[J].Adv.stud.Pure Math.10:1987,167-178.

同被引文献5

  • 1MORI S. Flip theorem and the exist ence of minimal models for 3 -folds [J]. J. Amer. Math. Soc.,1988,1:117-253.
  • 2MAURO C. Beltrametti and Susanna Di Termini Higher dimensional polarized varieties with non - integral nefvalue [ J ]. Advances in Geometry ,2003 ( 3 ) :287 - 299.
  • 3ZHAO Y. On classification of polarized varieties with non - integral nef values [ J]. Proc. Amer. Math. Soc. , 2001,129:1907 -1913.
  • 4BELTRAMETTI M C, SOMMESE A J. A remark on the Kawamata rationality theorem [ J ]. J. Math. Soc. Japan, 1993,45:557 - 568.
  • 5BELTRAMETI'I M C, SOMMESE A J. The adjunction theory of complex projective varieties [ M ]. Berlin : Berlin W. de Gruyter, 1995:169 - 171.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部