期刊文献+

基于隐Markov树的设备状态综合诊断模型 被引量:2

Synthetic machine condition diagnosis model based on hidden Markov tree
下载PDF
导出
摘要 为了充分利用小波系数之间的统计相依性以更有效地诊断设备状态,提出了一种基于隐Markov树(HMT)的综合诊断模型。首先通过主成分分析将来自多个传感器的信号转换为主成分,求出各主成分对应的频谱,然后通过比较对已训练的各HMT模型的适应度,运用Bayes决策融合法则得到设备状态综合诊断决策。为了克服HMT模型存在的计算溢出困难,采用尺度变换对EM算法进行了改进。通过两个实例验证了该综合诊断模型具有较高的诊断准确率。 To fully exploit the statistical dependency of wavelet coefficients for more effective equipment condition diagnosis, a synthetic diagnosis model based on hidden Markov tree (HMT) is presented. The measurements from multiple sensors are converted into principal components by principal component analysis, and subsequently transformed to spectra. By comparing their likelihood fitness to the trained HMT models, and using Bayesian decision fusion, further diagnosis decision is made. To overcome the overflow difficulty existing in HMT model, a scaling algorithm is developed to improve expectation maximization (EM) algorithm. The high diagnosis accuracy of the model is illustrated by two cases.
作者 武小悦
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第7期1034-1038,共5页 Systems Engineering and Electronics
关键词 故障诊断 隐MARKOV树 小波变换 EM算法 fault diagnosis hidden Markov tree wavelet transform EM algorithm
  • 相关文献

参考文献16

  • 1Yen G G,Lin K.Wavelet packet feature extraction for vibration monitoring[J].IEEE Trans.on Industrial Electronics,2000,47:650-667.
  • 2Wang W J,McFadden P D.Application of wavelets to gearbox vibration signals for fault detection[J].Journal of Sound and Vibration,1996,192:927-939.
  • 3Rabiner L R.A tutorial on hidden Markov models and selected application in speech recognition[J].Proceedings of IEEE,1989,77(2):257-285.
  • 4Ertunc H M,Loparo K A,A decision fusion algorithm for tool wear condition monitoring in drilling[J].Machine Tools & Manufacture,2001,41:1347-1362.
  • 5Cheng W T,Chan K L.Classification of electrocardiogram using hidden Markov models[C]//Proc.of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Hong Kong,China,1998,20(1):143-146.
  • 6Ocak H,Loparo K A.A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]//Proceedings of the 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing,Salt Lake City,USA,2001(5):3141-3144.
  • 7Rubini R,Meneghetti U.Application of the envelope and wavelet transform analysis for the diagnosis of incipient faults in ball bearings[J].Mechanical Systems and Signal Processing,2001,15(2):287-302.
  • 8Li X,Dong S,Yang Z.Discrete wavelet transform for tool breakage monitoring[J].International Journal of Machine Tools and Manufacture,1999,39(12):1935-1944.
  • 9Lin J.Feature extraction of machine sound using wavelet and its application in fault diagnosis[J].NDT & E International,2001,34(1):25-30.
  • 10Nikolaou N G,Antoniadis I A.Rolling element bearing fault diagnosis using wavelet packets[J].NDT & E international,2002,35(3):197-205.

同被引文献25

  • 1张冬霞.基于ANN和HMM的联机手写体汉字识别系统[J].微计算机信息,2005,21(08X):144-146. 被引量:8
  • 2茅力群.利用HMM提取连续语音中的口型信息[J].微计算机信息,2006(01Z):201-202. 被引量:5
  • 3桂林,武小悦.隐马尔可夫树模型在机械状态诊断中的应用[J].机械工程学报,2007,43(1):219-224. 被引量:5
  • 4Crouse M S, Novak R D, Baraniuk R G. Wavelet based statistical signal processing using hidden Markov models[J]. IEEE Trans. on Signal Processing, 1998, 46(4) : 886 - 902.
  • 5Li Zhang, Shiming Ji, Yi Xie, et al. Research on LIF image denoising based on wavelet-domain multiscale HMT model[C]// The Sixth World Congress on Intelligent Control and Automation, 2006: 10188-10191.
  • 6Bhardwaj P, Carin L. Infrared-image classification using hidden Markov trees[J]. IEEE Trans. on Pattern Analysis and Ma chine Intelligence, 2002, 24: 1394-1398.
  • 7Romberg J, Hyeokho C, Baraniuk R, et al. Multiscale classification using complex wavelets and hidden Markov tree models [C]//Proc. of International Conference on Image Processing, 2000, 2:371-374.
  • 8Chang P C, Juang B H. Discriminative training of dynamic programming based speech recognizers[J]. IEEE Trans. on Speech Audio Processing, 1993, 1:135 - 143.
  • 9Juang B H, Chou W, Lee C H. Minimum classification error rate methods for speech recognition[J]. IEEE Trans. on Speech Audio Processing, 1997, 5:257 - 265.
  • 10Katagiri S, Juang B H, Lee C H. Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method[C]//Proc. IEEE, 1998, 86:2345 - 2373.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部