摘要
目前大多数粒子群优化算法针对无约束优化问题或不等式约束优化问题,求解有等式约束优化问题的方法是把每个等式约束变成两个不等式约束,这种方法的缺点是在进化过程中粒子位置很难满足等式约束条件,影响了收敛速度和解的精度。提出了求解有等式约束优化问题的两种新粒子群优化算法,数值试验结果表明,算法是有效的。
Most of current particle swarm optimization algorithms are used to solve unconstrained optimization problems or inequation constrained optimization problems. The method to solve equation constrained optimization problems is that each constrained equation is turned into two constrained inequations. But, the particles' positions in this method aren't easy to satisfy constrained equations, which reduces the speed of convergence and the precision. To solve the equation constrained optimization problems, two new particle swarm optimization algorithms are presented. The experimental results show the algorithms are effective.
出处
《计算机工程与设计》
CSCD
北大核心
2006年第13期2412-2413,2418,共3页
Computer Engineering and Design
关键词
粒子群优化
等式约束
约束优化问题
适应度函数
particle swarm optimization
equation constrained
constrained optimization problem
fitness function