期刊文献+

超球坐标下相关函数对锂原子基态本征能收敛行为的影响 被引量:1

Effect of Different Correlation Functions on Convergence Pattern in the CFHHGLF Calculations of the Lithium Atom
下载PDF
导出
摘要 在超球坐标下,由3个对称相关函数exp[-α(r1+r2+r3)](α分别为,2.76和核电荷数z),利用相关函数-超球谐-广义Laguerre函数方法(CFHHGLF)直接求解Li原子的Schrdinger方程,计算基态本征能。从数值来看,α=z结果最好,其次是α=2.76,变参数α较差;而从径向的收敛速度来看,变参数α收敛最快,α=2.76收敛较慢,α=z时本征能只有当对称基超过100时才呈现收敛趋势。结果表明,在超球谐展开方案下只有α=z的相关函数才能得到高精度的本征能量。 Three simple spatially symmetric correlation functions exp[-α(r1+r2+r3)](variable parameter a by E+3/2α2=0,constant α,2.76 and the nuclear charge z,respectively)are used to carry out the correlation-function hyperspherical-harmonic and generalized-Laguerre-function(CFHHGLF)calculations of the ground state lithium atom.With 215 symmetric bases of the two-dimensional irreducible representation for the permutation group S3,constructed from nine-dimensional hyperspherical harmonics,the CFHHGLF calculations provide the best eigenenergy of-7.473 122 a.u.as α=z,followed by α=2.76,-7.450 788 a.u.,and the variable parameter α,-7.413 668 a.u.,while from the convergence rate in the hyperradial direction,the variable parameter α generates the fastest convergence eigenenergy,and as α=.76 the eigenenergy slowly converges,as α=z the eigenenergy converges only when over 100 symmetry bases are taken into account.In view of the accuracy as well as the stability of the eigenenergy,symmetric exponent correlation function with α=z should be considered to obtain high precise eigenenergy in hyperspherical harmonic method.
机构地区 山东大学化学院
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 1996年第11期1769-1772,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金
关键词 超球谐函数 相关函数 锂原子 基态 本征能 收敛 Hyperspherical Harmonics,Correlation functions,Ground state of the lithium atom
  • 相关文献

参考文献6

  • 1王沂轩,Phys Rev A,1995年,51卷,73页
  • 2邓从豪,Int J Quantum Chem,1993年,45卷,385页
  • 3张瑞勤,Phys Rev A,1993年,47卷,71页
  • 4邓从豪,科学通报,1993年,38卷,323页
  • 5徐光宪,量子化学,1981年
  • 6汪汉卿,量子化学中的群论方法,1981年

同被引文献8

  • 1王沂轩,邓从豪.超球坐标下Li原子~4S化态Schrdinger方程的直接解[J].化学学报,1996,54(5):417-421. 被引量:1
  • 2Deng C H, Zhang R Q, FengDC. Solution of Atomic and Molecular Schrtdinger Equation Described by Hyperspherical Coordinates[ J]. Int J Quantum Chem, 1993,45: 385.
  • 3Wang Y X, Deng C H. Solutions of the Schroginger Equations for lithium and Excited Helium(21 S)Atoms with a Correlation-function Hyperspherical Hermonic and Generalized Lagurrefunction Expansion Method [J] .Phys Rev,A, 1995,51:73.
  • 4Yalcin Z, Aktas M, Simsek M. Exact Solutions of the Schrnger Equation for 93States of He Atom with Fues-Kratzer-type Potential[ J]. Int J Quantum Chem,2000,76:618.
  • 5Wang Y X, Deng C H .The Formalism and Matrix Elements of a Complete Potential-Harmonicscheme for Directly Solving the Schrodinger Equation of the Helium Atom[J] .Chem Phys, 1997,214:33.
  • 6Bian W S, Deng C H. Diect Solution of the Many-boby SchrO linger Equation in the Hyperspherical Formalism: Application of the HH-GLF method to the positronium ion e+ e- e+ [J]. Int J Quantum Chem, 1994,50:395.
  • 7Haftel M I, Mandelzweig V B. Fast Convergent Hyperspherical Harmonic Expansion for 3-body Systems[J]. Ann Phys, 1989,189:29.
  • 8Kaplan I G. Symmetry of Mnay Electron Systems[ M]. New York :Academic, 1976.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部