期刊文献+

辨识动态系统噪声方差Q和R的新方法 被引量:7

New Approach to Identify the Noise Variances Q and R of Dynamic Systems
下载PDF
导出
摘要 对于带未知噪声方差的线性离散定常随机系统,引入左素分解可得到一个新的观测过程,它用两个滑动平均(MA)过程之和表示。用解相关函数矩阵方程组得到了噪声方差Q和R的估值器,进而基于新的观测过程的采样相关函数及其遍历性可得到噪声方差Q和R的强一致估计。算法简单,便于实时应用。一个目标跟踪系统的仿真例子说明了其有效性。 For the linear discrete time-invariant stochastic systems with unknown variances, by introducing a left coprime decomposition, a new measurement process is obtained, which is described by the sum of two moving average (MA) process. The estimators of the noise variances Q and R are obtained by solving the matrix equations for correlation function, and based on the sampled correlation function of the new measurement process and its ergodicity, the strong consistent estimators of the noise variances Q and R are obtained. The algorithm is simple, and they are suitable for real time applications. A simulation example for a target tracking system shows their effectiveness.
出处 《科学技术与工程》 2006年第14期2008-2011,共4页 Science Technology and Engineering
基金 国家自然科学基金(60374026) 黑龙江大学自动控制重点实验室基金资助
关键词 辨识 噪声方差估值器 收敛性 一致性 相关方法 identification noise variance estimator convergence consistent correlation method
  • 相关文献

参考文献4

  • 1[1]Kailath T,Sayed A H,Hassibi B.Linear estimation.Upper Saddle River,New Jersey:Prentice-Hall,Inc.,2000
  • 2[3]Lee T T.A direct approach to identify the noise covariances of Kalman filtering.IEEE Transactions Automatic Control,1980;25:841-842
  • 3[4]Deng Z L,Zhang H S,Liu S J,Zhou L.Optimal and self-tuning white noise estimators with applicantions to deconvolution and filtering problems.Automatica,1996;32(2):199-216
  • 4[5]Ljung L.System identification:theory for the user,second edition.Prentice-Hall PTR,1999

同被引文献33

  • 1邓自立,高媛,张明波.ARMA信号自校正信息融合Wiener滤波器[J].科学技术与工程,2004,4(9):749-752. 被引量:4
  • 2邓自立,郝钢,吴孝慧.两种加权观测融合算法的全局最优性和完全功能等价性[J].科学技术与工程,2005,5(13):860-865. 被引量:14
  • 3李云,郝钢,邓自立.自校正加权观测融合Kalman估值器[J].科学技术与工程,2006,6(2):116-120. 被引量:2
  • 4Jang C W, Juang J C, Kung F C, Adaptive fault detection in real-time GPS positioning. IEE Proceedings-Radar. Sonar Navigation, 2000; 147 (5) :254-258.
  • 5Deng Z L, Gao Y, Li C B, et al. Self-tuning decoupled information fusion Wiener state component fihers and their convergence. Automatica, 2008; 44(3) : 685-695.
  • 6Gao Y, Jia W J, Sun X J, et al. Sell-tuning mullisensor weighted measurement fusion Kalman filter. IEEE Trans on Aerospace and Electronic Systems,2009 ; 45 ( 1 ) : 179-191.
  • 7Ljung L. System identification, theory for the user ( Second Edition). Prentice-Hall PTR. Beijing : Tsinghua University Press, 1999.
  • 8KAILATH T,SAYED A H,HASSIBI B.Linear estimation[C] //Upper Saddle River Neap Jersey:Prentice-Hal1 Inc,2000.
  • 9郝钢,邓自立.自校正观测融合Kalman滤波器[C] //Wcica06年会论文集,大连:[s.n.] ,2006:1571-1575.
  • 10KAILATH T,SAYED A H,HASSIBI B.Linear Estimation[M].New Jersey:Prentice-Hall,2000.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部