摘要
本文将单变量函数的Fourier级数几乎处处收敛性的Marcinkiewicz判别法推广到二维空间中一类集合──可测矩形上,给出了在可测矩形上,一个二元函数的Fourier级数的矩形和几乎处处收敛的条件.
In the paper, Marcinkiewicz's test for almost everywhere convergence of Fourier seriesof one variable is generalized to the measurable rectangles in the twodimensional space. Asufficient condition of almost everywhere convergence of the rectangular sum of Fourier series of two variable on the measurable rectangles is given.
出处
《首都师范大学学报(自然科学版)》
1996年第3期54-62,共9页
Journal of Capital Normal University:Natural Science Edition
关键词
几乎处处收敛
判别法
傅里叶级数
Almost everywhere
Fourier series
Marcinkiewicz's test
Rectangularsum.