摘要
(i)我们用(x-b)n+xn=(x+a)来代替xn+yn=zn作为费尔马最后定理(FLT)的普遍方程式.其中a及b是两个任意自然数.应用二项展开式,(0.1)可以写成因为ar-(-b)r始终包含a+b作为它的因数,(0.2)可写成其中фr=[ar-(-b)r]/(a+b)对于r=1,2,…,n.都是个整数.(ii)令s是a+b的一个因数,并令a+b=sc.我们可用x=sy来变换(0.3)成为下列(0.4)(iii)将(0.4)除以S2,我们得(0.5)式的左边,是的整系数多项式,而右边cф/s是个常数Cф/s.若Cф/s不是个整数,那末我们不能求得能适合(0.5)的整数y,这样FLT对这场合是对问.若Cфn/s是个整数,我们可以改变s和c,使cф/s≠整数。
i)Instead of xn+yn=Zn,we use as theorem(FLT),where a and b are two arbitrary natural numbers by means o fbinomial expansion can be writtenasbecause ar --b alway contains a+bas its factor can be writtenas weher are in tegers for r=1,2,3…,n (ii)Let s be a factor of a+b and let (a+b)=sc .We can use x=sy to trans-form (0.3) to the following (0. 4)(iii) dividing (0.4) by s2, we haveOn the left side of(0.5), there is a polynomial of U with integer coefficients and on the right side there is a constant cф/s. If cфn/s is not an integer,then we cannot find an integer y to satisfy (0.5), and then FLT is true for thiscase. If cфn/s is an integer, we may change s and c such that c&./span integer.
出处
《应用数学和力学》
CSCD
北大核心
1996年第11期969-978,共10页
Applied Mathematics and Mechanics
关键词
因式分解
共轭因数
费马最后定理
factorization, cofactor, relative prime, gcd, combination, algebraicdivison, Fermat's Last Theorem